清华大学
-
曲良体ACS Nano:基于拱桥石墨烯结构的电调制纳滤膜用于多组分分子分离
近日,清华大学Tiantian Gao,Kai-Ge Zhou,曲良体教授开发了一种基于拱桥石墨烯结构的电调制纳滤膜。
-
付民/雷钰/林雨潇/Mauricio Terrones教授,AM:仿生合成铁氧体量子点/石墨烯异质材料用于高性能超级电容器
量子点结构牢固的锚定在石墨烯片层上,不仅增强了结构稳定性,而且改善了导电性,从而加速了离子传输和电荷迁移。良好的结构特性赋予了电极材料更好的电化学表现,所合成的NiFe2O4QD/G复合电极材料表现出优异的电容性能(1 A g-1时比电容达到697.5 F g-1,10 A g-1时比电容为501.0 F g-1,1万次循环后比电容没有明显衰减 )。
-
清华大学何向明教授JPS:塑料集流体,助力锂离子电池更上一层楼
在有机电解质中的稳定性是锂电池集流体应用塑料聚合物基材的一个关键标准。基于我们的研究结果,塑料集流体对有机电解质是惰性的,但对石墨烯薄膜有良好的附着力。
-
科技强国建设开启新阶段
2022年3月15日,《自然》杂志上发布了一项成果:清华大学集成电路学院团队巧妙利用石墨烯薄膜作为栅极,首次制备出亚1纳米栅极长度的晶体管,具有良好的电学性能。这是人类首次制成栅极长度最小的晶体管。
-
清华大学集成电路学院任天令团队研发出混合模态语音识别和交互智能人工喉
任天令团队成员开发了一款基于石墨烯的智能可穿戴人工喉(AT),同商业麦克风和压电薄膜相比,人工喉对低频的肌肉运动、中频食管振动和高频声波信息有很高的灵敏度,同时也具有抗噪声的语音感知能力。对声学信号和机械运动的混合模态的感知使人工喉能够获得更低的语音基频信号。此外,该器件还可以通过热声效应实现声音的播放功能。人工喉的制作过程简单、性能稳定、易于集成,为语音识别和交互提供了一种新的硬件平台。
-
清华丘陵Nano Lett机械联锁策略高含量氮化硼纳米片/聚合物复合薄膜用于热管理
我们开发了一种机械联锁策略,将分散良好的高填充含量(高达20 wt %)氮化硼纳米片(BNNSs)掺入聚四氟乙烯(PTFE)基质中,从而形成可塑、易于加工和可重复使用的BNNS/PTFE复合面团。重要的是,由于面团的延展性,分散良好的BNNS填料可以重新排列成高度定向的方向。
-
张如范:碳纳米管筑造“太空天梯梦”
韧劲或如松、或如竹,反复试炼的钢铁与张如范研究碳纳米管的决心相比,却稍显逊色。碳纳米材料作为潜力巨大的下一代超级材料,是未来超强材料和碳基半导体的核心,可用于制造航空天梯等许多目前世界还不存在的产品,有着广泛的应用前景。让我们一同期待,在碳纳米材料强力支撑下,未来太空探索“基建工程”这一逐梦之旅的开启。
-
Adv. Mater.: 植入石墨烯量子点用于靶向增强肿瘤成像和局部药代动力学长期可化视
种植在纳米医学中的超高光稳定性荧光GQDs在广泛应用中有很大的潜力来缓解这些不良情况,如胚胎发育、干细胞分化轨迹、和基于成像的时空单细胞组学。当然,目前种植的GQDs纳米粒子也有很多局限性:一是绿色荧光GQDs的穿透深度有限,二是核心NPs在体内短时间内无法生物降解。
-
【材料】清华大学徐超/陆跃翔Nat. Commun.:基于氧化石墨烯离子筛分膜的镧系/锕系元素组分离
该策略用强氧化试剂处理含有锕系元素(U, Np, Pu, Am)和镧系元素(Ce, Nd, Eu, Gd)的强酸性溶液,所有锕系元素被氧化为线性的锕酰离子,而镧系元素仍然是球形离子。在这种情况下,两组元素在尺寸和空间构型上有很大的差异,可以通过具有特定通道尺寸的GOM进行筛分,从而实现锕酰离子和镧系离子的相互分离。
-
清华大学曹化强教授、加州大学圣芭芭拉分校Anthony K. Cheetham院士 Angew:石墨烯带电子自旋催化
该工作报道由自由基偶联反应合成的具有高自旋浓度的石墨烯带作为自旋催化反应的催化剂,通过利用电子自旋共振谱(ESR)详细研究碳催化剂的电子自旋催化机理。
-
Nano Res.[探测]│西安工程大学樊威教授团队:基于激光直写的Janus石墨烯/PBO织物在智能消防服饰中的应用
西安工程大学樊威教授团队联合清华大学张莹莹教授团队者通过CO2激光直写法制备了两种Janus石墨烯/聚对苯撑苯并二唑织物(PBO)织物,并将其作为智能消防服和消防面罩的性能进行了评估。
-
Angew: 石墨烯带的电子自旋催化
在学术研究和化学工业中,大多数催化剂主要利用过渡金属中未配对的d电子进行化学吸附和反应。然而,许多金属的储量有限,因此,人们更加关注非金属替代品的开发。近日,清华大学Cao Huaqiang使用自由基偶联法合成了石墨烯带,并对其自旋催化反应的电子自旋共振光谱动力学进行了研究。
-
燕山大学合成出最硬最强导电的碳/碳复合材料
研究团队以玻璃碳为原料在高压窄温区条件下合成了一种新型碳/碳复合材料——非晶碳/纳米金刚石自生复合材料。该复合材料的非共格界面与石墨/金刚石相变形成的共格界面完全不同,非晶碳向金刚石的相变机制也迥异于石墨向金刚石的相变机制。
-
魏洋、李群庆研究组在石墨烯微加热芯片研究中取得进展
他们将二维石墨烯材料代替传统的金属电阻加热器,大幅提升了原位加热芯片的性能。该加热芯片可在26.31 ms内加热至800 ℃,功耗仅为0.025 mW/1000 μm2。同时,在加热至650℃时,芯片因加热产生的形变仅约为50 nm,相比传统的金属加热芯片,该形变降低了约两个数量级,有效解决了在加热过程中芯片观察窗口因受热形变引发的失焦问题。