浙江理工大学
-
浙理工等《JMCA》:NiFe NPs负载缠绕自生长碳纳米管的N掺杂石墨烯中空小球,用于可充电液态/柔性全固态锌空气电池
综上所述,成功构建了锚定在 NGHS 中的 NiFe 合金纳米颗粒,该纳米颗粒包裹着具有三维结构的自生 NCNTs。设计的电极材料显示出优异的双功能电化学性能(对于 ORR 和 OER)。2-MIM的引入有效地控制了负载金属纳米粒子的尺寸,为过渡金属的负载提供了非常有效的思路,因为过渡金属的均匀可控负载是影响其应用的关键因素。此外,Fe的引入对促进金属氮化物的形成起到关键作用,从而提高OER和ORR的双功能电催化性能。该研究为设计和合成 NiFe-杂原子掺杂碳基材料作为氧双功能催化剂用于可充电ZAB的深度开发提供了一个新的范例。
-
蒋仲庆教授,JMCA观点:NiFe NPs负载缠绕自生长碳纳米管的N掺杂石墨烯中空小球在可充电液态/柔性全固态锌空气电池
本篇工作提出了一种改进策略,即结合碳质材料和合金NiFe基材料,设计并构筑双功能氧电催化剂。根据以往的实验和模拟调研,碳材料的多维结构可以有效地框定合金颗粒的生长,避免颗粒的聚集。同时,引入金属基催化剂也可以增加碳的结晶度,这有助于充分暴露活性位点和提升电化学性能。但是到目前为止,由镍铁基碳材料组装的ZABs装置仍然不能获得预期的充放电性能。
-
浙理工《ACS APM》:纳米纤维素-石墨烯基湿度传感器的构建和性能
在这项工作中,通过采用导电 CNF/Gr 悬浮液作为湿度传感层,通过简单的过滤工艺将其涂覆在同质 CNFF 基板上,成功地制造了一种灵活、快速响应和耐用的湿度传感器。得益于这种独特的成分和结构,制备的湿度传感器表现出优异的传感性能和耐用性。此外,该传感器可以以非接触方式监测和区分人体皮肤和人体呼吸的湿度,表明在医疗保健系统和农工业生产中的应用前景广阔。
-
Angew:多金属氧化物/多孔石墨烯芯鞘纤维
有鉴于此,浙江理工大学武观、Wangyang Lu、清华大学徐建鸿等报道基于多金属氧化物/多孔石墨烯异质结构构建芯鞘纤维,其中具有较高的赝活性多金属氧化物鞘均匀的修饰在多级多孔石墨烯纤维芯结构表面,这种芯鞘纤维实现了优异的超级电容器性能。
-
纳米碳/环氧树脂复合材料和我——彷徨在迷失的边缘,所幸勇往直前
大片径氧化石墨烯片协助碳纳米纤维分散在环氧树脂中,并构建三维碳系骨架结构,增强环氧树脂的力学性能、导热性能、耐热性能、动态热力学性能,在工程材料和功能材料有重要的应用。
-
浙江理工大学胡毅教授CEJ: 高导电性EGaIn /丝素墨水用于石墨烯3D阵列结构MSCs
受纺织染整领域低成本、高通量和可扩展印花工艺启发,使基于电子墨水的平网印花工艺在改进柔性可穿戴智能纺织产品的有限制造方法上实现可能。然而,当前制备的柔性电子器件,其电子电导率和离子传输提升仍然存在挑战。研究人员通过探究丝素(SF)对液态金属离子的吸附螯合作用制备出高稳定性镓铟(EGaIn)/ SF墨水,运用平网印花策略在柔性基材上可扩展制备图案化高导电EGaIn集流器,并对其导电恢复机制进行解析。同时,通过调节丝网目数和精准对花印制石墨烯3D阵列结构微型超级电容器(MSCs)电极,进一步解析其多向离子扩散机理。测试结果表明,所得的MSCs器件表现出出色的机械柔性、集成性和电化学性能,这在未来的柔性可穿戴智能纺织品中具有极大应用潜力。
-
浙理工《ACS AMI》:石墨烯-阴丹酮搭配MXene电极用于高性能柔性非对称超级电容器
浙江理工大学赵福刚老师课题组在《ACS Appl. Mater. Interfaces》期刊发表论文,研究将多电子氧化还原可逆、结构稳定的阴丹酮 (IDT) π-backbones 与还原的石墨烯氧化物(rGO)框架形成IDT@rGO分子异质结。这种不含导电剂和粘合剂的薄膜电极在-0.2-1.0V的电位范围内提供高达345Fg–1的最大电容。搭配薄膜电极-Ti3C2Tx MXene在负极中工作-0.1至-0.6V 的电位范围提供了高达769Fg–1的电容。由于IDT@rGO异质结正极和 Ti3C2T x MXene负极的完美互补电位,聚乙烯醇/H2SO4基于水凝胶电解质的柔性非对称超级电容器在8kWkg –1的高功率密度下提供了1.6V的扩大电压窗口和 17Whkg–1的令人印象深刻的能量密度,以及显著的速率能力和循环寿命以及出色的柔韧性和可弯曲性。
-
浙江理工大学《Adv Mater Technol》:各向异性和超薄的还原氧化石墨烯纤维膜,具有优异EMI屏蔽性能
研究通过简单的湿纺工艺,提出一种具有皱纹、凹槽和分层结构的新型超薄有序还原氧化石墨烯纤维 (orGOF) 膜。结果表明,oGOF膜具有明显的各向异性导电性和定向电磁屏蔽性能。
-
学术报告:三维石墨烯复合材料和晶体多孔高分子的制备及能源应用
学术报告:三维石墨烯复合材料和晶体多孔高分子的制备及能源应用
-
Advanced Science: 源自氧化石墨烯的N掺杂碳纳米管嵌入FeCo纳米颗粒,作为双功能空气电极催化剂
有鉴于此,华南理工大学蒋仲杰教授、太原理工大学郝晓刚教授、江南大学王利魁、浙江理工大学蒋仲庆教授、宋昌盛等人,报道了一种新的方法来生产嵌入N、P共掺杂碳包覆的N掺杂碳纳米管的FeCo合金纳米颗粒(NPs) (NPC/FeCo@NCNTs),其中NCNTs由氧化石墨烯纳米片和三聚氰胺衍生而来。
-
浙江理工大学石墨烯量子点制备光催化材料研究获进展
据了解,课题组利用石墨烯量子点作为“剥离工具”,成功开发了多种绿色、高效的二维氮化碳纳米片的合成方法,探索出了一条构建高效新型光催化材料的崭新途径。