河北工业大学

  • 孟垂舟教授/杨丽副研究员Nano Energy:基于激光诱导石墨烯的一体化集成式可充电锌空电池驱动传感系统用于长时连续的健康监测

    该观点文章报道了一种基于激光诱导石墨烯的长续航一体化可穿戴传感系统,该系统在同一激光诱导石墨烯(Laser-induced graphene, LIG)平台上集成了高灵敏度的应变传感器和可充电锌空电池。应变传感器的传感电极、锌空电池的催化空气电极以及两者之间的互连线全部由在聚酰亚胺薄膜(PI)上进行激光直写得到的多孔石墨烯构成,而后将电极图案转印到聚二甲基硅氧烷(PDMS)薄膜得到柔性可拉伸的基底。

    2022年7月25日 科研进展
    92800
  • 河北工业大学《Compos Sci Technol》:自然干燥的超弹性仿生石墨烯气凝胶,用于压力/拉伸传感和分离

    总之,冷冻铸造是一种可行的技术来调整 rGO气凝胶的仿生结构,这里提出的自然干燥克服了冷冻干燥过程在高能耗、复杂的设备要求和难以扩大规模方面的局限性。同时结合两种方法的优点,可以制备出具有超弹性、高导电性和出色疏水性的类木rGO气凝胶。rGO 气凝胶的卓越性能可用于许多高级应用,包括机械缓冲、柔性传感器和有机溶剂净化或漏油。预计冷冻浇注和自然干燥可以与其他工艺(如 3D 打印)相结合,以促进具有高可压缩性和新功能应用的结构材料的进一步开发。

    2022年6月10日 科研进展
    94000
  • 河工大《Carbon》:一种新型超轻复合材料的可控制备及吸波性能!

    石墨烯材料的微波吸收性能因其较高的介电常数和超低的磁损耗能力而受到严重阻碍,我们报告了氟化氮化硼纳米片支撑的石墨烯量子点复合材料,氟化氮化硼纳米片的低介电常数和铁磁性不仅减少了微波反射还增强了磁损耗,并帮助GQDs克服了亲水性。通过调节石墨烯量子点的尺寸发现GQDs/F-BNNs的吸收带宽和反射损耗(RLmin)与GQDs的尺寸密切相关。

    2021年12月21日 科研进展
    1.2K00
  • 河北工业大学《Carbon》:悬铃木树皮为原料制备Co掺杂多孔碳复合材料,用于微波吸收

    研究以悬铃木树皮为碳源,六水合硝酸钴(Co(NO3 ) 2·6H2O)为钴源,制备了树皮衍生的Co掺杂多孔碳复合材料(Co@PC)。Co2+的影响研究了浓度和树皮碳化温度对 MA 性能的影响。由于优异的阻抗匹配和多损耗机制,Co@PC 复合材料获得了卓越的 MA 性能。RL最小值在 8.6 GHz 时可为 −58.4 dB。结果表明Co@PC可以用于微波吸收材料(MAMs)领域。

    2021年11月1日 科研进展
    1.3K00
  • 河北工业大学EnSM:双活性/动力学互促的Li3VO4/石墨烯实现可喷涂高比能锂离子微型电容器

    MICs性能受限的主要原因是正负极之间电化学反应动力学不匹配,需开发电压平台安全、比容量大、倍率性能好、稳定性好的负极材料;另外微型MICs器件的制备和组装技术相对复杂,需要更为简便的技术路线来满足实际需求。

    2021年9月24日 科研进展
    1.1K00
  • 河北工大《Carbon》:新型轻质复合材料的可控合成及吸波性能!

    虽然石墨烯复合吸波材料的研究给我们带来了一定的成功,但是依然存在一些问题。石墨烯是一种零带隙的半导体,并且本身不具有优异的微波吸收能力。同时石墨烯的介电常数大,当电磁波接触其表面时,很容易引起强反射。这种强反射势必会影响复合材料的吸波性能,于是我们创新性的使用石墨烯量子点(GQDs)来代替石墨烯。与此同时,氮化硼纳米片(BNNs)对电磁波的反射能力较弱,同时具有熔点高、导热系数高、化学性质稳定、耐腐蚀等优良特性,且在电磁波吸收领域已有一些研究。将GQDs与超薄BNNs相结合,得到了轻质GQDs/BNNs复合材料,其阻抗匹配率和稳定性均得到增强。

    2021年7月21日
    1.8K00
  • 利用氧化石墨烯制备轻质柔性碳基电磁屏蔽复合薄膜!

    本论文基于静电纺丝技术,以TiO2、吡咯单体和氧化石墨烯为原料,从制备物理性能和结构可控的纳米纤维及无纺布体系出发,围绕双连续导电网络结构和夹层结构等多层次结构的有序构筑,自下而上的制备出了高性能有机/无机混杂碳基电磁屏蔽复合薄膜。

    2019年5月8日
    1.8K00
  • 河北工业大学柔性可穿戴传感研究获突破

    此外,该课题组采用类弹簧结构的包芯纱作为柔性骨架,表面组装二维片层结构石墨烯,得到包芯纱-石墨烯复合网膜作为应变传感器的导电层,替代表面平整的平面导电层。

    科研进展 2019年3月25日
    1.2K00
  • 河北工业大学制备高灵敏度柔性传感器

    近年来,越来越多的电子设备正在向着小型化、柔性化和可穿戴方向发展。近日,河北工业大学材料学院、能源装备材料技术研究院研究人员在柔性传感器领域取得突破进展。相关研究进展分别刊登于《材料化学杂质A 》和《美国化学会应用材料与界面》。

    科研进展 2019年3月21日
    1.4K00
客服

电话:134 0537 7819
邮箱:87760537@qq.com

返回顶部