新加坡国立大学
-
Science Advances | 诺奖得主:二维材料制备和最新应用视角!
本研究旨在填补这一空白,通过构建亚纳米异质通道膜来探索复杂纳米通道中的流体传输机制。为此,科学家们合成了由还原MXene(Ti3C2)和石墨烯交替堆叠而成的异质通道膜,并进行了结构表征和流体传输速率的实验测量。通过这项研究,科学家们开发了一个新的亚连续流模型,通过建立表面-流体相互作用的直接关系,能够更准确地预测溶剂在亚纳米裂缝孔膜中的传输。这一研究工作为设计先进膜材料并解决工业分离挑战提供了重要的理论和实验基础。
-
膜分离,最新Nature Materials!
如何实现大面积碳纳米管的精确排列和石墨烯片层的完美堆积存在技术瓶颈,导致膜分离性能难以达到理论预测值,极大地限制了膜的实际应用。二维多孔碳材料,如石墨炔、二维共轭聚合物等近年来受到较大的关注,理论研究表明其具有垂直于膜平面的一维传质通道,且通道的尺寸和化学性质可以通过单体分子设计进行调控。目前,二维多孔碳材料膜的可控制备仍然难以实现,阻碍了其在分子尺度分离过程中的应用。
-
济南大学徐彩霞、刘宏,中科院物理所谷林AM:电化学剥离同步掺杂石墨烯构筑可集成柔性微型储能器件
济南大学刘宏、徐彩霞教授课题组联合新加坡国立大学John Wang教授课题组及中国科学院物理研究所谷林教授课题组采用电化学剥离的方法制备了高品质氯掺杂的石墨烯材料,并用于高性能柔性超级电容器的开发。
-
济大刘宏/徐彩霞、物理所谷林、NUS Wang《Adv. Mater.》: 模板辅助-转印法构筑氯掺杂石墨烯基的可集成化柔性器件
该课题组采用了一种简便高效的电化学剥离法成功制备了氯掺杂的少层石墨烯,并利用模板辅助-转印的方法制备了可集成化的柔性叉指电极,最终构筑了高性能柔性微型储能器件。
-
中国学者静电纺出单层石墨烯膜用于纳滤,解决能耗问题并获超高乙醇渗透率
近期,新加坡国立大学张岁团队以铜箔上生长的单层石墨烯为接收器,通过简便的 PAN 和 PVDF 静电纺丝技术,将单层石墨烯与纳米纤维薄膜牢固结合在一起,制备出了单层石墨烯溶剂纳滤膜。该薄膜具有优异的有机溶剂纳滤性能,乙醇渗透率达到了创纪录的156.8 L·m-2·hour-1·bar-1,对玫瑰红染料的截留率超过 94.5 %,表现出了更优的渗透率和选择性。
-
新加坡国立大学王定官Small:表面合成具有可变带隙的多孔石墨烯
借助表面合成方法,新加坡国立大学王定官博士等成功制备两种具有大带隙(bandgap)的多孔石墨烯框架。通过两步热处理分别诱导脱卤和脱氢的两种碳-碳偶联反应,进而得到纳米孔石墨烯-1和纳米孔石墨烯-2。
-
Small:可变带隙纳米多孔石墨烯的表面合成
调节纳米多孔石墨烯的带隙对于诸如有机杂化器件中的电荷传输层等应用是可取的。该领域的关键是能够合成具有可变孔径和可调带隙的2D纳米多孔石墨烯。有鉴于此,近日,新加坡国立大学Andrew T. S. Wee教授,吴继善教授以及香港理工大学杨明助理教授(共同通讯作者)等合作展示了具有可变带隙的纳米多孔石墨烯的表面合成。
-
Sci. Adv.:具有超高乙醇渗透率的单层石墨烯膜
近日,新加坡国立大学Sui Zhang团队(通讯作者)提出了一种简便且通用的静电纺丝方法,可在具有高孔隙率的不同聚合物载体上实现纳米多孔石墨烯膜,以实现有效的扩散和压力驱动分离。导电石墨烯在静电纺丝过程中作为高多孔纳米纤维沉积的极佳受体,从而使石墨烯能够直接附着到载体上。同时,一种通用的“粘合剂”添加剂可以增强石墨烯层和聚合物载体之间的粘附力,从而在由不同聚合物制成的纳米纤维上实现高石墨烯覆盖率。
-
《Science》子刊:单层石墨烯溶剂纳滤膜,创造最高乙醇渗透率记录!
新加坡国立大学Zhang Sui 团队以铜箔上生长的单层石墨烯为接收器,通过简便的PAN和PVDF静电纺丝技术,将单层石墨烯与纳米纤维薄膜牢固结合在一起,制备出了单层石墨烯溶剂纳滤膜。该薄膜具有优异的有机溶剂纳滤性能,乙醇渗透率达到了创纪录的156.8 L·m-2·hour-1·bar-1,对玫瑰红染料的截留率超过94.5%,表现出了更优的渗透率和选择性。
-
Infomat:量身定制范德华异质结的能带,用于多级存储和人工突触
新加坡国立大学陈伟教授团队展示了一种基于SnS2、h-BN和少层石墨烯vdWH的三端浮栅器件。SnS2的大电子亲和力通过降低h-BN上的空穴注入势垒来显著降低器件的编程电压。本文的浮栅器件作为一种非易失性多级电子存储器,具有大的开/关电流比(~105)、良好的保留性(超过104 s)和稳健的耐久性(超过1000次循环)。此外,它可以作为人工突触来模拟基本的突触功能。由于编程电压小,可以实现低至~7 pJ的低能耗。长时程增强和抑制(LTP/LTD)中的高线性度(<1)和电导比(~80)进一步有助于人工神经网络模拟中的高模式识别精度(~90%)。
-
突破性的新型智能材料拥有从给药到储能的许多潜在用途
现在,新加坡国立大学(NUS)先进二维材料中心(CA2DM)的研究人员创造了一类新的智能材料。它具有二维(2D)材料的结构,但表现得像电解质,这使其可能成为在体内输送药物的一种新方式。
-
国大研发新认证技术 可助疫苗防伪
实体标签可用两种二维材料(two-dimensional materials)分别制成:氧化石墨烯(graphene oxide)以及过渡金属碳或氮化物(MXene)。这些二维材料在经过处理后,表面会出现无法复制的微观结构,如同人体指纹一样独一无二。
-
科学家开发出新型高灵敏石墨烯基混合磁传感器
新加坡国立大学(NUS)的研究人员已经开发出一种新型的混合磁传感器,它比大多数的商用传感器更灵敏。这一技术突破限制,开发出体积更小、更便宜的传感器技术,可应用于多种领域,如消费电子、信息及通讯技术、生物技术和汽车。