天津大学
-
ACS Catal:KOH活化N、S共掺杂石墨烯实现自由基氧化机理控制
澳大利亚阿德莱德大学段晓光、天津大学彭文朝等报道了对N、S共掺杂石墨烯通过ZnCl2、KOH、CO2进行活化,从而在石墨烯中引入不同结构缺陷同时实现了各种功能化,这种修饰的碳基催化剂能够通过活化过氧单硫酸钾盐用于降解苯酚。N、S共掺杂的石墨烯表现比N掺杂石墨烯更高的催化活性,同时KOH活化的N、S共掺杂石墨烯进一步改善氧化反应活性。
-
ACS Catal:2H-MoS2/掺氮石墨烯用于全pH分解水
有鉴于此,天津大学杨静等报道了一种复合结构电催化剂,2H-MoS2/掺N多孔石墨烯。该电催化剂的特点在于其中含有丰富的界面Mo-吡啶N,有效的改善电催化活性。
-
Nano Letters:石墨烯层包裹等离激元Cu纳米颗粒的碳化丝瓜海绵设计用于高效太阳能制蒸气
有鉴于此,天津大学刘乐全副教授报道了精心设计了一种高效的太阳能制蒸气装置,通过金属有机骨架(MOF)和天然丝瓜海绵(NLS)生物质的热解,在碳化丝瓜海绵(CLS)上原位生长了包裹在超薄石墨烯中的Cu纳米颗粒(NPs)(Cu@C/CLS)。
-
天津大学胡文平、耿德超团队AM:大尺寸二维单晶材料在铜基底上的可控成长
首先,文章概述了铜作为二维单晶材料生长催化剂的独特之处;然后分别展示了不同种类铜表面上石墨烯和六方氮化硼(h-BN)二维晶体的大尺寸生长。随后进一步揭示了二维单晶的生长机理,为深入研究晶体生长动力学提供了依据。最后作者也对目前二维单晶工业化大规模生产的相关问题提出了自己的独到见解,并展望了其广阔的发展前景。
-
天津大学封伟团队MSER:聚合物基三维连续网络的导热复合材料
采用复合高导热填料(如石墨烯、碳纳米管、氮化硼、金属氧化物等)是一种简单而高效的方式来提高聚合物基体的热导率,目前在工业生产已经有了广泛的应用。现有的大量研究表明,在聚合物材料内部构建导热网络可以在低添加量的条件下实现热导率的大幅度提高,这种三维渗流网络(如图1所示)可以为声子的快速传递提供通道,从而加速热量沿着三维网络进行传递。
-
石墨烯电池:神话,还是泡沫?
然而,事实真的是这样吗?下面的内容主要从科学的角度出发为大家揭开神秘的石墨烯电池的面纱(注:石墨烯电池尚未有明确的概念,根据石墨烯的作用可大体分为以石墨烯作导电添加剂和以石墨烯作负极材料两类。本文讨论的是以石墨烯作为电池负极材料这一类)。
-
杨全红丨石墨烯:化学剥离与组装
《石墨烯:化学剥离与组装》一书围绕石墨烯的化学剥离与组装方法学展开讨论,并展望了石墨烯未来发展脉络。对化学剥离法制备石墨烯的化学机制、研究进展、宏量制备和应用前景以及存在的问题和挑战作了系统的阐述和分析;同时梳理了石墨烯的组装方法,对组装机制、基于石墨烯的新型碳基材料制备和应用进行了总结和评述(图3)。
-
Science Advances:小片状氧化石墨烯膜实现超快速有机溶剂纳滤
近日,南洋理工大学Tae-Hyun Bae,天津大学Michael D. Guiver报道了采用两种类型的GO纳米片,即小片状GO(SFGO)和LFGO(LFGO),采用加压辅助过滤的方法进行了膜的制备。成功设计出用于高性能OSN应用的小片状氧化石墨烯(SFGO)膜。
-
张生:这张膜将改变燃料电池
近日,张生与英国曼彻斯特大学诺贝尔物理学奖得主安德烈·海姆爵士等人合作,证实了石墨烯、氮化硼等二维材料具有质子传导性,并进一步发现,把自然界中广泛存在的云母用于燃料电池的高温质子交换膜,比目前商用膜性能更优、更节能环保。这两项研究成果分别发表在世界顶级学术期刊《自然·纳米》与《自然·通讯》上。
-
天津大学化工学院副院长范晓彬:勇于挑战 立德树人
2016年,36岁的范晓彬主持完成的“石墨烯的绿色合成及其多相催化应用”获天津市自然科学一等奖,相关重要基础研究成果推动了我国石墨烯材料的多相催化应用探索
-
手机电量增加4倍!天津大学搞出新一代电池材料:充电宝可以扔了
近日,天津大学传出好事,该校封伟教授领衔其团队成功通过含氟自由基切割单壁碳纳米管配置出单层石墨烯纳米带,并已经获取国际专利授权,这种新型材料的能量密度高达每千克2738瓦特小时,这相当于手机电量提高了4倍多
-
世界首次 我科学家制备出单层石墨烯纳米带
27日,记者从天津大学了解到,该校封伟教授团队通过含氟自由基切割单壁碳纳米管,在世界范围内首次制备出单层石墨烯纳米带,所申请的国际专利也于近日获得授权。这是中国科学家首次通过一步法获得单层石墨烯纳米带,其作为原电池正极材料能量密度较进口产品可提升30%。
-
天津大学封伟教授等综述:光学应用石墨烯基手性液晶材料
作者主要介绍了胶体石墨烯手性液晶和石墨烯/手性液晶复合材料,其中手性向列相,扭曲晶界相,蓝相及其对光学应用的促进作用是该综述讨论的重点。该综述还介绍了石墨烯基手性液晶材料的潜在应用。最后,作者对该领域将来的研究方向提出了一些建议,并对其前景进行了展望。
-
“碳”究者杨全红:给锂电池来场大瘦身
对于未来,杨全红希望石墨烯研究能做碳材料“做不好”和“做不了”的事情,要从解决传统碳材料无法解决的应用瓶颈入手,寻找石墨烯的杀手锏级应用。
-
基于石墨烯薄膜的一体化柔性超级电容器
以石墨烯代表的碳材料作为电极材料具有良好的双电层电容特性和力学性能,有望获得高性能的柔性薄膜超级电容器,但是通常制备柔性自支撑电极和超级电容器的方法具有制备工艺复杂、电极材料和集流体界面兼容性差、成本较高等缺点。