南京大学

  • 宋海欧、张树鹏团队Chemosphere: 用质子化氮化碳修饰的氧化石墨烯电极增强低浓度微咸水的电容去离子化

    电极材料在增强CDI器件的电吸附性能方面发挥着重要作用。到目前为止,CDI电极材料主要包括碳材料、导电聚合物和金属氧化物。其中,源自生物质的活性炭(AC)等多孔碳材料因其卓越的导电性、多孔纳米结构和低成本而被视为研究重点。石墨烯基纳米材料也因其超高的理论比表面积、可调节的表面特性和优异的物理化学性质而成为CDI的热门材料。

    2022年3月8日 科研进展
    1.4K00
  • 《The Innovation》微流控纺丝+剪切流诱导制备石墨烯涂层水凝胶微纤维

    首先其核芯水凝胶微纤维从微流控装置中连续纺丝,然后通过浸涂方法产生的剪切流来形成薄的氧化石墨烯(GO)纳米片涂层外壳。由于微流控纺丝过程中的流体组分、流速以及浸涂法的提升速度都是高度可控的,因此可以精确定制所得微纤维的形貌,包括核-壳结构、导电性和热性能。这些特性使所得微纤维具有作为热传感器和运动传感器的潜力,并且它们在手势指示器中的价值也已被探索。用这种简单可控的方法产生的微纤维可以在柔性电子器件中具有广泛应用。

    2022年2月28日 科研进展
    1.3K00
  • Nature Sustain|南京大学朱斌、朱嘉:石墨烯气凝胶界面光热催化实现更环保、更高转化率的酯化反应

    南京大学团队提出了一种基于磺酸官能化氧化石墨烯气凝胶的光热催化系统,以提高酯化的产率,而无需过量的反应物或脱水剂。由于局部光热加热和不同的分子键亲和力,生成的产物从反应位点蒸发,导致反应物局部过量,从而热力学驱动反应有利于酯的生成。具体来说,乙酸转化率达到了 77%,明显高于 62.5% 的理论极限。理论分析表明,在实际工业酯化反应中,其在产品分离能耗方面具有显着优势。我们的策略可以在热催化、硝化、酰化和其他化学品的合成等各个领域找到应用。

    2022年1月29日 科研进展
    1.2K00
  • 南京大学朱嘉团队《自然·可持续发展》:石墨烯气凝胶界面光热催化系统,突破酯化转化率理论极限!

    南京大学朱嘉教授团队将碳基固体酸与界面太阳能加热相结合,提出了一种基于磺酸官能化氧化石墨烯气凝胶(SGA)作为非均相催化剂的界面光热催化系统,以提高酯化的转化效率,无需过量的反应物或脱水剂。由于局部光热加热和不同的分子键亲和力,生成的产物从反应位点蒸发,导致反应物局部过量,从而热力学驱动反应,有利于酯的生成。具体来说,乙酸转化率达到 77%,明显高于 62.5% 的理论极限。

    2022年1月16日 科研进展
    1.4K00
  • 南京大学姚亚刚教授、迪肯大学陈英教授《Chem. Eng. J.》综述: 氮化硼纳米管制备与应用的研究进展

    在这篇综述中,我们首先系统的总结当前氮化硼纳米管的制备方法,包括电弧放电、激光烧蚀、球磨退火法、模板取代法、热等离子体法和化学气相沉积(CVD)等。考虑到未来氮化硼纳米管的结构控制研究发展,我们从实验装置、前驱体、催化剂和反应气体等角度全面而详细的介绍了CVD法制备氮化硼纳米管的进展。然后基于氮化硼纳米管优异的性质,从复合材料、水净化薄膜、光学器件和生物医药等领域概述了当前氮化硼纳米管的应用研究报道。最后,我们提出了现阶段氮化硼纳米管材料在制备和应用方面所面临的挑战和潜在的机遇,为未来的研究指明了方向,同时希望能够激发和鼓励更多在该领域的研究工作。

    2021年12月22日 科研进展
    1.7K00
  • 中科院上海微系统所《Nature》子刊:面向量子电子学的石墨烯纳米带展望文章

    文章首先从GNRs材料制备的角度系统介绍了其在催化衬底表面的精准制造和技术相关衬底表面的规模化合成,指出了当前面临的技术瓶颈并探讨了相关解决方案。此外,文章回顾了GNRs在逻辑器件和自旋器件方面取得的成果,并就关键指标与碳纳米管(CNT)、二硫化钼(MoS2)、硅纳米片(Si NS)以及硅基5nm节点工艺的FETs进行对比,GNRs具有众多优异的性能,在未来量子电子学应用领域极具潜力。最后,文章描绘了GNRs在三维(3D)集成和量子计算方面的应用前景,并提出基于GNRs的6种器件构想。

    2021年10月22日
    1.4K00
  • 南京大学物理学院张翼课题组在外延石墨烯上直接观测到杂质诱导的全域谷间散射效应

    近日,南京大学物理学院、固体微结构物理国家重点实验室、人工微结构科学与技术协同创新中心的张翼教授课题组采用变温角分辨光电子能谱(ARPES)首次在外延石墨烯表面直接观测到了杂质诱导的全域谷间散射效应。

    2021年10月8日
    1.1K00
  • 刘忠范院士应邀访问南京大学化学化工学院并作“名师讲坛”报告

     刘忠范院士在报告中介绍了其团队从实验室课题组向北京石墨烯研究院发展历程,团队在石墨烯材料制备,特别是A3尺寸石墨烯、4英寸晶圆等量产产品的过程,以及在高质量石墨烯薄膜化学气相沉积生长方法、批量制备技术、装备研发等诸多方面取得的突破,展望了未来石墨烯产业发展的光明前景。并分享了从实验室产品到产业化的经验心得、鼓励年轻老师以袁隆平先生做榜样,做真正对国家、对社会、对人民有用的科研。 

    2021年5月31日
    1.1K00
  • 5月24日名师讲坛-刘忠范教授:石墨烯新材料-从实验室样品到规模化产品

    我们从2008年开始进入石墨烯领域,重点关注石墨烯材料的制备方法和杀手锏级莹莹探索。过去十二年来,在高质量石墨烯薄膜的化学气相沉积生长方法、批量制备技术与装备、超级石墨烯玻璃、超级石墨烯光纤、以及石墨烯基第三代半导体照明器件等诸多方面取得了一系列突破,成为国际上最具有代表性的石墨烯研究团队。本报告将结合我们的研究实践,阐述石墨烯新材料产业的诸多挑战和未来发展趋势。

    2021年5月19日
    2.0K00
  • 南京大学《Carbon Energy》:多孔3D石墨烯块体用于双电层超级电容器

    本文,南京大学王学斌教授课题组在《Carbon Energy》期刊发表名为“Jinjue Zeng et al. Porous monoliths of 3D graphene for electric double‐layer supercapacitors. ”的论文,综述了3DG多孔块体材料的合成方法,并重点介绍了其在电双层电容器中的应用。讨论了目前3DG的制备与应用面临的挑战和前景。

    2021年3月29日 科研进展
    2.3K00
  • 南京大学王学斌Carbon Energy: 用于双电层超级电容器的多孔3D石墨烯块体

    南京大学王学斌教授等人,综述了3DG多孔块体材料的合成方法,并重点介绍了其在电双层电容器中的应用。讨论了目前3DG的制备与应用面临的挑战和前景。

    2021年3月18日
    2.8K00
  • 探索 | 青年科学家勇闯基础研究“无人区”

    过渡金属硫族化合物(TMD)是二维材料家族的重要分支,与石墨烯的零带隙的导体属性不同,部分TMD二维材料是具有带隙的半导体,理论上是将来有望打破硅基芯片垄断的候选材料之一,“相比硅基芯片,TMD二维材料具有更高的载流子迁移率,也有更高的开关比,同时其天然的小尺寸与优越的散热性能,有望让芯片变得更小更快更节能。”

    2021年3月16日
    1.4K00
  • 终现形! 石墨烯在体内最终降解为CO2?

    鉴于此,南京大学毛亮,美国加利福尼亚大学Tian Xia等人比较了不同侧向尺寸的14C标记的少层石墨烯在小鼠体内一次静脉注射长达一年后的命运,结果表明,少层石墨烯主要积聚在肝脏中,较大的石墨烯可以被Kupffer细胞降解为14CO2。

    2020年11月11日
    2.9K00
  • 南京大学环境学院毛亮课题组关于石墨烯生物安全性研究取得新进展

    石墨烯进入肝脏后主要分布于Kupffer细胞、肝脏内皮细胞和肝细胞,且主要附着在细胞膜周围(图1A)。随着暴露时间的延长,大尺寸石墨烯导致血红细胞膜的破裂,而破裂的血红细胞被Kupffer细胞吞噬,从血红细胞内释放出来的血红蛋白在Kupffer细胞内被降解为血红素,导致Kupffer细胞内的铁含量不断增加,进而破坏铁平衡,诱发了类芬顿反应,引起了石墨烯的一系列转化(图1B)。

    2020年11月9日
    1.6K00
  • 南京大学Nano Lett.:软颗粒插层氧化石墨烯膜实现快速选择性的水传输

    近日,南京大学张炜铭教授研究团队,首次报道了以软性颗粒-聚丙烯腈凝胶粒子(PAN GPs)作为插层剂,通过PAN GP变形来有效调控氧化石墨烯(GO)膜的层间距。而且,碱处理使PAN GPs表面生成疏水/亲水结构,有助于水在GO膜中的溶解-扩散。在GO膜中插层PAN GPs软性粒子,可以实现水有选择的快速传输,例如,该GO膜对重金属络合离子Cu-EDTA2-的去除效率是文献中2D膜的4-13倍。

    2020年9月22日 科研进展
    1.4K00
客服

电话:134 0537 7819
邮箱:87760537@qq.com

返回顶部