华中科技大学
-
【成果推介】柔性石墨烯高能快充储能器件
项目负责人为华中科技大学化学与化工学院教授,项目团队长期深耕于电化学、材料学、机械制造等领域,参与国家重点研发计划等,荣获多项省部级科研奖项。
-
华中科技大学AFM:用于超灵敏和选择性氨传感的氮化硼涂层石墨烯混合气凝胶的模板质量依赖性转换合成!
该研究提出了一种利用 GA 模板合成 BN 基气凝胶的高度可控的方法,通过改变模板的质量和反应条件,可以微调成分和密度。研究者在合成 BN 基三维气凝胶方面探索了一种新方法,并强调了高比表面积在气体传感平台上的重要性。利用活性氨气作为氮源和硼酸作为硼源,成功合成了 BN-GA 和 BNA 气凝胶,同时保持了多孔宏观和纳米级形态。
-
海智专家走进蔡甸 “碳”寻发展新机遇
活动中,华中科技大学肖菲教授和湖北工业大学崔兵教授分别就低碳环保材料石墨烯柔性储能器件产业化和金融赋能新能源产业链创新发展等主题进行了精彩分享。武汉融华资信投资管理有限公司执行董事陈刚围绕新能源行业发展趋势及当下投资热点与大家开展深入交流,为参会者带来前沿的行业洞察和技术趋势。
-
深圳市科协自主创新大讲堂之“柔性电池:未来能源的新希望”讲座举办
肖菲深入浅出地讲解了石墨烯基纸电池和纤维电池的技术原理、当前的研究热点、产品形态、运用场景及未来的市场前景等方面知识。互动环节中,企业家们基于自身的创业经验、公司产品特征等,与肖菲进行了深入交流,共同探讨技术合作点。
-
1 µm!飞秒激光诱导MXene复合石墨烯
在本研究中,将MXene掺入聚酰亚胺前体溶液中,得到MXene混合聚酰亚胺薄膜。利用飞秒激光直写工艺,制备了嵌入MXene晶格的多孔石墨烯。利用飞秒激光的低热影响,成功通过在聚合物薄膜上直接激光写入制备了最小线宽为1 µm的飞秒激光诱导MXene复合石墨烯(LIMG)。这种独特的前体掺杂技术使MXene能够在LIG的晶格内均匀掺杂,为载流子在缺陷密布的LIG晶格中的传输创造了稳定的环境。与原始LIG相比,LIMG显示出增强的载流子迁移率和显著改善的电导率,提高了两个数量级,达到3187 Sm−1。
-
基于二维材料的阻变存储器
综上所述,基于二维材料的RRAM具有许多独特的优势和广阔的应用前景。然而,要实现其商业化应用仍需要克服一些挑战。通过深入研究二维材料的性质、优化生产工艺和降低成本等措施,有望推动基于二维材料的RRAM在未来存储和计算领域的应用和发展。
-
华中科技大学《Adv Sic》:基于石墨烯复合薄膜的可穿戴远红外治疗仪,有效预防术后腹膜粘连
我们通过采用柔性石墨烯复合膜(F-GCF)在低压电源下产生FIR来揭示FIR对PPA的预防效果。此外,我们机械地研究了FIR在PPA预防中的生物学作用,发现FIR可能通过上调Nr4a2表达来驱动巨噬细胞向M2表型极化,并为FIR治疗更多炎症性疾病提供了理论依据。
-
超高倍率钠离子电池正极材料:外延成核提升NaxFeFe(CN)6@rGO晶格规整性
由于氧化石墨烯(GO)和NaxFe[Fe(CN)6]y·nH2O(NaFeHCF)之间只有4.87%(<5%)的有限晶格失配,以及GO中大量的电负性官能团(-COOH、-OH、-CH(O)CH-),GO可以作为NaFeHCF的成核和随后的外延生长平台,这使得NaFeHCF中缺陷含量大大降低(每配方单位0.08)。通过提供更规整的NaFeHCF晶格,以及一步水热得到的还原氧化石墨烯(rGO)的高导电网络,实现了9 A g-1的超高速率下96.8 mAh g-1(39s,23228W kg-1)的前所未有的倍率性能,远远超过了我们所知的任何先前报道的基于PBAs的正极材料,验证了其作为电网储能的可靠高功率钠离子电池候选正极的优越性。
-
华中科技大学吴梦昊教授课题组在多层石墨烯体系中预测新型滑移/摩尔铁电性
本文中则预测了一种新型摩尔滑移铁电:特定单层/多层石墨烯摩尔超晶格体系(比如1+3 层转角体系)具有单一方向极化畴和非极化畴共存,使得体系在零电场下具有非零的总极化,且可以通过层间滑移来翻转。
-
分级球状Mo2C/N掺杂石墨烯催化剂促进低压Li2C2O4预锂化
组装的Gr||LiFePO4和SiC||LiFePO4全电池在补锂后可逆容量分别提升了15%和22%。此外,非原位XPS和能谱表明预锂化后SEI表现出更优异的稳定性。
-
华科Appl. Catal. B:石墨烯/CoSe2活性界面和三维石墨烯纳米网阵列协同促进析氢反应
基于此,华中科技大学王帅等人在碳布(CC)上,将N掺杂石墨烯限制的空心CoSe2纳米粒子(NG-HCS)锚定在 N 掺杂垂直取向石墨烯纳米网阵列(NGM-As)上(CC/NG-HCS@NGM-As)。
-
ChemSusChem:硫酸根自由基氧化制备边缘羟基化石墨烯的机械化学绿色新方法
干法球磨机械化学法已被用于制备边缘功能化石墨烯,其原理为利用球磨机械效应破坏石墨中的碳-碳键断裂形成相应的碳(离子)自由基,进而与干冰、草酸、SO3等磨剂反应,在碳自羧由基上引入羟基或磺酸基。由于石墨C-C键能(710 kJ mol−1)较大,采用上述“惰性”磨剂共磨不仅耗时(12-48 h)、耗能(转速500 rpm),而且其共轭结构不可避免地被部分破坏,因此,制得的石墨烯后续仍需采用600 °C以上的高温热处理以提升其导电性。
-
华中科技大学材料科学与工程学院、材料成形与模具技术国家重点实验室Luyang Gong等–定向多层氧化石墨烯的界面滑动
结果表明,在碳纤维表面沉积GO可以提高CFRPs在较宽的温度、频率和应变范围内的阻尼性能。当应变为0.23%,频率为1 Hz时,CFRPs (0.0345)的阻尼损失因子增加了113%。在ANSYS中提出了基于应变能法的数值参数分析方法,结合实验数据得到了多层GO的界面特性。利用GO界面阻尼参数可以预测多层碳纳米材料改性复合材料在不同服役条件下的阻尼性能。