华东理工大学
-
华东理工大学《AMT》:大尺寸石墨烯泡沫的结构控制,具有出色的微波吸收、隔热和机械稳定性
综上所述,我们提出了一种制备大型GF的技术。本研究为多功能泡沫材料的大规模生产提供了新的策略,具有广泛的潜在应用前景。
-
华东理工《ChemNanoMat》:三明治状r-Fe3O4/rGO@CN复合材料,用于锂离子电池的无导电剂阳极
研究采用水热法和冷冻干燥工艺,制备了以还原氧化石墨烯(rGO)为导电基体、以无定形氮掺杂碳(CN)为保护层的Fe3O4纳米棒。得到的Fe3O4纳米棒均匀地分散在rGO纳米片上。rGO的加入提高了复合材料的导电性,而无定形碳层减轻了Fe3O4纳米棒的体积膨胀效应。
-
Nat Commun:石墨烯基材料出乎意料的高效离子解吸
近日,宁波大学Liang Chen,华东理工大学方海平,Yizhou Yang通过添加少量的Al3+实验证明了离子在磁性石墨烯氧化物(M-GO)上的快速高效解吸。
-
华东理工大学物理学院Shanshan Liang等–基于小薄片还原氧化石墨烯膜的超高纳滤性能
在这项工作中,我们展示了小薄片的还原氧化石墨烯(S-rGO)膜的可行性,以创建更有序的二维(2D)层流通道用于纳滤。
-
河南师范大学与华东理工大学合作JEC:硼掺杂激活氮杂石墨烯,助力石墨负极高性能储钾
近期,河南师范大学王海燕博士、张虎成教授、路战胜教授、王键吉教授与华东理工大学江浩教授、李春忠教授合作,设计了一种由N,B桥式掺杂碳片联结的膨胀石墨结构(NBEG),实现了K+吸附-扩散过程的有效调控和优异的结构稳定性。研究发现B共掺杂能够提高活性N原子掺杂比率,调控K+吸附-扩散动力学以及增强NBEG与K+之间的电荷转移。同时,NBEG稳定的结构、适当的层间距和丰富的活性位点能够加速质荷转移和提高K+存储能力。应用于钾离子电池负极时,NBEG展现出优异的电化学性能,远超大多数已报到的碳基负极。
-
华东理工大学化工学院锂硫电池研究取得新进展
功能炭材料研究团队合成了一种“双功能”石墨烯介孔SnO₂/SnSe₂纳米片用作锂硫电池的隔膜修饰层(G-mSnO₂/SnSe₂),其具备高电导率、强化学吸附位点(SnO₂)和动态插层转换动力学(LixSnSe₂)等特点。研究人员采用原位XRD、原位Raman、非原位XANES和DFT模拟计算,证实了该隔膜修饰层对“穿梭效应”具有较好的抑制作用,并且能促进多硫化锂催化转化。
-
华东理工大学《Nat Commun》:超细金属氧化物/还原石墨烯纳米复合材料的合成,用于超高通量纳滤膜
这种合成的基础是利用GO表面的氧官能团作为快速异相成核的优先位置,导致在rGO表面形成尺寸小于3 nm的单分散金属氧化物纳米颗粒,并以高密度负载于rGO表面。这种合成方法对于锚定各种金属氧化物纳米颗粒(如ZnO、CoO、CuO、MgO、Fe2O3、Nb2O5、CdO、La2O3、MoO3)和金属硫化物(如ZnS、MoS2纳米颗粒)具有很强的通用性。
-
Nat Commun:用于超高通量纳滤膜的超细金属氧化物/石墨烯
基于此,华东理工大学龙东辉教授,Bo Niu报道了开发了一种通用、简便的胶体合成法来制备用于纳滤膜的超细金属氧化物/rGO纳米复合材料。
-
卢云峰AEM:一种基于封装在两亲性石墨烯管内的Sn4P3高性能钠离子负极
这种两亲性GT由内亲水的石墨烯管(掺氮)和外壁疏水的石墨烯管(未掺杂)组成,保证了Sn4P3纳米颗粒在GT内的有限生长和对纳米颗粒体积膨胀的有效调节。GT分散在含有锡前驱体的水溶液中,该前驱体允许溶液渗透到亲水管中。随后的水热处理将前驱体转化为SnO2,从而形成了在管内生长的SnO2纳米颗粒的GT复合材料。值得注意的是,SnO2纳米粒子也可能在GT外部和溶液中生长,但通过清洗和过滤,这些纳米粒子可以很容易地去除,从而形成具有良好封装SnO2纳米粒子的GT复合材料。最后,将被包裹的SnO2经过磷化处理转化为Sn4P3,形成Sn4P3/GT复合材料,而Sn4P3被限制在GT中。
-
上海海事大学《ACS AMI》:基于银纳米线/石墨烯复合材料的低温可穿戴应变传感器
上海海事大学Shicong Niu(第一作者)、常雪婷教授/Shibin Sun/华东理工大学高阳(通讯作者)等研究人员研究提出了一种低温可穿戴应变传感器,该传感器通过将银纳米线/石墨烯 (Ag NWs/G) 复合材料结合到聚二甲基硅氧烷 (PDMS) 聚合物中来构建。
-
热还原氧化石墨烯膜中意外的锂选择性吸收
该工作提出了一种新的选择性提取Li+的方法,解决了当前锂资源开发工艺上的局限性,为还原氧化石墨烯膜在盐湖提锂和废弃锂离子电池浸出液中回收锂等领域的应用,建立了开创性的道路,并为锂资源及其它金属资源的可持续发展,提供了具有可行性的方案。
-
Chemical Engineering Journal:N掺杂石墨烯量子点/Ni(Fe)OxHy 电催化剂加快OER反应速率
华东理工大学胡彦杰课题组构建了一类新型电催化剂,以柠檬酸铵为原料,通过水热法将N掺杂的石墨烯量子点(NGQDs)强耦合在Ni(Fe)OxHy纳米片阵列上。表面化学状态分析表明,NGQDs通过M-N-C键固定在Ni(Fe)OxHy上,这导致电子发生强烈的相互作用,产生更多的高价金属(Ni3+和Fe3+),这些高活性金属中心位点可以有效地促进OER过程中的羟基化转变,从而极大程度地改善OER动力学。
-
Nat Commun:石墨烯量子点上官能团调控用于引导CO2选择性转化为CH4
近日,美国辛辛那提大学Jingjie Wu,华东理工大学Cheng Lian,上海大学Liang Wang报道了功能化的石墨烯量子点(GQDs)可以同时实现电化学CO2还原为CH4的高选择性和活性。
-
华东理工大学王庚超课题组–电泳-微波合成硫和氮掺杂石墨烯泡沫用于高性能超级电容器
这里报道了一种新的电化学-凝固型电泳沉积方法,包括气泡模板法和原位微波还原过程,在超薄石墨纸上可控制备了硫、氮掺杂的石墨烯泡沫(dGF)。dGF材料拥有相互交错的孔结构,高的比表面积,以及硫和氮共掺杂,显示出高的比电容达354 F·g-1,以及良好的倍率性能。由于石墨纸作为沉积基底和原位微波还原引发剂的优点,通过定制石墨纸的形状可以方便地获得叉指电极。组装的柔性超级电容器的能量密度为71.5 W h kg-1(功率密度为0.65 kW kg-1),并且在10 000次充放电循环后仍能保持99.5%的比电容。
-
Applied Catalysis B: Environmental:具有增强的光吸收性能的黑磷偶联的黑色二氧化钛纳米复合材料用于高效光催化CO2还原
中科院上硅所黄富强研究员,华东理工大学韩一帆教授报道了具有增强的宽光谱太阳光吸收性能和优异的电子迁移率的BP偶联的BT纳米复合材料(BP-BT)用于有效的光催化CO2还原为CH4。