北京大学
-
北京大学彭海琳教授团队研究技术系列和博士后招聘启事
主要研究方向包括:1)高迁移率二维材料的精准合成与界面调控;2)新型纳米芯片材料开发与高性能晶体管器件技术;3)石墨烯高速光通信材料与器件片上集成;4)石墨烯电镜载网技术。
-
北京大学马仁敏教授团队 Nature:基于扭曲光子石墨烯晶格中的光学平带的Moiré纳米激光器阵列
该研究提出并展示了基于扭曲光子石墨烯晶格中的光学平带的Moiré纳米激光器阵列,其中实现了从单个纳米腔到可重构纳米腔阵列的相干纳米化。
-
物理化学学报 | 北京大学尹建波团队:耦合蝶形天线的石墨烯室温太赫兹探测器
本文报道了一种天线/栅极一体化的石墨烯太赫兹探测器,该探测器的核心设计是:利用蝶形天线将入射太赫兹光场缩减至< 1 μm的天线间隙区域,以增强太赫兹波的吸收;同时将天线的两极作为器件的两个栅极,在石墨烯中调控出pn结,使天线间隙区同时成为光生载流子的分离区。通过同步增加光生载流子的产生及分离效率,在室温下实现了对太赫兹的高效探测,在2.7 THz处探测的噪声等效功率达到1 nW·Hz−1/2量级,且该设计具有进一步的优化空间及可集成潜力,有望成为室温太赫兹探测的解决方案。
-
北京大学等《Nat Commun》:Janus掺杂双层石墨烯增强铜防腐性能
双层石墨烯之所以具有如此优异的防腐性能,是因为它具有非同一般的金纳斯掺杂效应,其中重度掺杂的底层与铜形成了强烈的相互作用,限制了界面扩散,而近乎电荷中性的顶层则表现为惰性,减轻了电化学腐蚀。我们的研究可能会拓展铜在各种极端工作条件下的应用场景。
-
JPCL快讯|石墨烯表面滑移促进的高性能质子交换膜燃料电池微孔层设计
受水和气体在石墨烯表面和碳纳米管内滑移行为的启发,石墨烯表面的水的滑移行为有利于气体扩散层中水的排出,从而有望减少水淹现象的发生。在传统基于碳黑的微孔层中加入仅1%质量分数的超临界流体剥离制备的石墨烯,微孔层表面的裂痕相比碳黑微孔层减少了60%,面电阻减少了3%,气体透过率增加了近3倍。
-
中科院物理所朱学涛/郭建东团队Phys. Rev. Lett.: 石墨烯中拓扑声子的直接观察
研究测量清楚地揭示了二维动量空间中节环声子的闭环和狄拉克声子的锥形结构,与理论计算非常一致。声子谱的三维映射(二维动量空间和能量空间)的能力为系统识别拓扑声子态开辟了一条新的途径。这项研究工作为拓扑声子在超导、动态不稳定性和声子二极管中的潜在应用奠定了坚实的基础。
-
垂直取向高分子导热复合材料的膨胀流辅助构筑方法
北京大学白树林教授课题组提出了在膨胀流辅助下构建各向异性填料在复合材料中的垂直取向结构(使用片状BN作为概念验证),该方法具有通用、可大规模生产的特点。BN在硅胶中的取向在厚度方向沿曲线分布,包括在中心区域的垂直取向和条带表面的水平取向。由于BN在条带中心区域的垂直取向,获得了高达5.65 W/(m·K)的面外热导率,通过添加沥青基碳纤维复合材料热导率可以进一步提高到6.54 W/(m·K)。
-
北大等《Nano Lett》:通过保形和清洁转移实现双层石墨烯的高保湿性能
我们发现,通过最小化两个单层之间的间隙,双层石墨烯在A4大小的区域内的水蒸气传输率可以低至5×10–3 g/(m2 d)。在逐层转移过程中,石墨烯层之间没有界面污染和保形接触,从而实现了高阻隔性能。我们的工作揭示了通过石墨烯层的水分渗透机制,利用这种方法,我们可以定制手动堆叠二维材料的层间耦合,从而实现新的物理和应用。
-
Nano Res.[碳]│张锦院士团队:高强高界面剪切氧化石墨烯/杂环芳纶复合纤维
北京大学张锦院士团队通过原位聚合引入2-氯-4,4-二氨基苯酰替苯胺(DABA-Cl)和少量氧化石墨烯(GO),经过湿法纺丝连续化制备了一种具有高界面剪切强度(49.3 MPa)和拉伸强度(6.27 GPa)的新型杂环芳纶纤维。氧化石墨烯的引入促进了杂环芳纶纤维的结晶、取向,并且氧化石墨烯和聚合物分子链之间的氢键增强了分子链间相互作用,从而提高了纤维的拉伸强度和界面剪切强度。
-
高鹏、刘开辉等利用电镜测量转角h-BN/石墨烯中的可调带间跃迁
该研究表明,即使在二维绝缘体和半金属材料之间的转角异质界面(如h-BN和石墨烯)中,也可能由于层间的摩尔势的作用,使跃迁能量随转角变化而改变,甚至诱发新的层间跃迁。因此,在类似包含二维异质界面的器件中,这些界面耦合效应应该被仔细考虑,以防止产生意外的跃迁途径或导致材料本身跃迁能量的移动,从而影响到器件性能和测量结果。此外,h-BN/石墨烯异质结构的转角关联使其层内和层间的跃迁能量连续可调,为制造具有指定波长的新型二维光电器件创造了可能的条件。
-
Adv. Mater.:刘忠范院士-彭海琳教授-林立研究员课题组报道快速、规模化石墨烯晶圆转移方法
该方法的特点是对铜晶圆表面进行均匀氧化,并旋涂聚双酚A碳酸脂(PC)以及聚甲基丙烯酸甲酯(PMMA)作为转移媒介将石墨烯与铜晶圆机械“干法”分离,之后采用高分子共混策略实现石墨烯与目标衬底的无损动态辊压贴合,并在转移媒介中再混合低玻璃化转变温度的聚碳酸亚丙酯(PPC)促进石墨烯与目标衬底的共形接触,最终利用有机溶剂去除高分子转移媒介。
-
Nano Res.[碳]│北京大学/北京石墨烯研究院刘忠范—孙禄钊课题组:二聚体碳源前驱体快速生长石墨烯薄膜
本工作从碳源选择和石墨烯生长基元步骤设计出发,总结了乙炔(C2H2)和CH4前驱体生长石墨烯的行为和规律:与CH4碳源不同,C2H2碳源裂解后优先在铜箔上游沉积石墨烯,且表现出明显的生长速率优势。
-
北大张锦院士NC:碳纳米管助力坚固而坚韧的芳纶纤维
短胺化单壁碳纳米管通过影响单壁碳纳米管周围杂环芳纶链的结构来提高结晶度和取向度,原位聚合增加了单壁碳纳米管之间的界面相互作用,促进应力传递,抑制应变局部化。这两种作用是强度和韧性同时提高的原因。
-
北大/北京石墨烯研究院刘忠范、张艳锋和北大杨槐Nano Lett.:基于石墨烯/胆甾相液晶的电驱动型热致变色调光器件的构筑及应用
该研究分别采用石墨烯/玻璃复合材料和温度响应型小分子ChLC作为透明加热板/中性光衰减材料和滤光材料,构筑了一种全新的电驱动型热致变色动态调光器件。
-
刘忠范Nano Letters:基于石墨烯/胆固醇液晶的电驱动热致变色光调制器在宽增益动态光色调节相关应用中的应用
北京大学的刘忠范院士和张艳锋教授等将石墨烯的电加热能力与小分子量胆甾醇液晶(ChLC)独特的光学特性(热致变色和圆二色性)相结合,构建了一种全新的热致变色光调制器作为主动可调谐滤色器。