北京大学
-
北大/北京石墨烯研究院《NAT COMMUN》:稳定量产!大规模生产石墨烯蒙烯氧化铝纤维/织物 ,用于电加热和EMI屏蔽等
在本研究中,通过在市场上可买到的非金属 AF/AFF 基底上直接进行石墨烯 CVD 生长,开创了GAF/GAFF的先河。值得注意的是,在γ-Al2O3-AF 上生长石墨烯的过程中,首次在非金属衬底上发现了石墨烯独特的 VSS 生长模式,这与在传统催化惰性非金属衬底上观察到的众所周知的 VS 生长模式截然不同,从而导致了石墨烯相对快速的低温生长。所提出的 VSS 生长模型大大推进了我们对非金属基底上石墨烯 CVD 生长的理解。除了实验室水平的 GAFF 制备,我们还实现了大规模 GAFF 的稳定量产。
-
北京理工大学团队在杂化范德华外延生长研究方向取得重要突破
研究团队以氮化铝薄膜生长在石墨烯上为例,利用多尺度的理论计算和连续介质模型推导,系统研究了氮化铝薄膜在平面内和垂直于平面方向生长动力学过程。他们发现氮化铝与石墨烯的界面存在一种新型的成键方式,即杂化范德华相互作用。这样一种独特的成键方式使得薄膜生长呈现出显著区别于传统模式的新范式,被命名为HVE模型。在HVE模型下,材料平面内和平面外的生长会较强的耦合在一起,并满足一定的物理约束条件,而这个约束条件也受到界面相互作用的影响。
-
四通道石墨烯光接收机
该研究实现了零偏压石墨烯光电探测器的阵列集成,展示了高质量机械剥离石墨烯和低接触电阻的石墨烯-金属边接触应用于规模化光子集成回路的可能,对提升面向链路级的石墨烯光电探测器的器件性能具有重要指导意义,同时,为CVD生长石墨烯和机械剥离石墨烯应用于硅基光子集成回路提供了一种高一致性策略,可以促进基于石墨烯的硅基有源光子集成芯片的发展。
-
刘忠范院士团队:石墨烯新应用,又一首次!
本工作首次报道了通过二元前驱体协同CVD策略在GFF基底上可控生长石墨烯。利用分解效率高的乙炔作为活性炭原料实现石墨烯的快速生长,含氧丙酮则可提高石墨烯层的均匀性和晶体质量。二元前驱体的协同作用实现了石墨烯生长速率的提高同时降低了石墨烯的缺陷密度。设计了二元前驱体分叉引入-合流预混(BI-CP)系统,包括利用高精度注射泵控制液态丙酮的输送、二元前驱体与载气的预混合和汽化、气相传输管线的加热措施和监测单元,实现了前驱体的稳定可控引入。设计的BP-CP CVD系统可实现批次间和批次内GGFF的稳定制备,在热管理应用方面具有巨大的潜力。
-
化学学院王欢课题组展望单分子液相电镜解析生物分子动态前景
近期,北京大学化学与分子工程学院王欢课题组受邀以“Imaging Biomacromolecules in Action with Liquid-phase Electron Microscopy”为题以“Forum”形式在Trends in Chemistry上对使用单分子液相电镜技术对溶液态生物大分子相互作用的动态过程及中间态解析和深度学习图片分析方法以及分子动态三维重构等进行了展望。
-
化学学院王欢、邵元华课题组合作揭示纳米咖啡环动力学
他们在石墨烯封装的液体池中用纳米气泡作为几何限制形成厚度约为10纳米的薄水膜,发现纳米液滴可以稳定形成和生长。液滴生成主要通过“Plateau-Rayleigh”不稳定性驱动,液滴所处的几何限域影响其稳定性,实验发现的“液桥”新机制尤其帮助稳定纳米液滴。这些观察结果为纳米尺度流体运输提供了新的见解,对理解和利用受限环境中的流体行为具有潜在意义,也为微滴甚至纳米液滴中化学反应的新现象提供研究方法。
-
北京大学申请石墨烯电极微针生物传感器专利,提高微针灵敏性
本发明通过在构建的聚苯乙烯微针阵列上涂覆石墨烯‑普鲁士蓝电极,实现了石墨烯电极微针传感器的制作,并基于该传感器提供了治疗药物闭环控制系统,将微泵与微针进一步整合,通过微针的中空通道输送治疗药物。
-
AMR Account|北京大学郭雪峰教授团队:利用单分子功能芯片揭示分子光电子学和分子电子学的全部潜力
在这篇述评中,我们展示了在单分子电子学和光电子学领域的持续研究,特别强调使用石墨烯-分子-石墨烯单分子结作为主要框架的研究。
-
二维材料新进展!Nature Nanotechnology
作者用各种外延生长技术分析了典型二维vdW材料的缺陷水平和晶体质量的测量。然后,作者概述了生长均匀多层和扭曲同质结构的技术路线。作者进一步总结了当前的研究策略,以指导未来2D vdW材料的按需制造以及后续工业应用的器件制造。
-
高性能碳纳米管纤维的未来:湿法纺丝技术的突破与机遇!︱NSR综述
论文首先回顾了过去二十年湿纺碳纳米管纤维的发展历程。从碳纳米管纤维首次通过湿法技术制备以来,经历了表面活性剂、生物质分子、超强质子酸等多种分散体系,纤维的纺丝及后处理工艺也在不断优化。论文涵盖了碳纳米管纤维湿纺整体技术路线,碳纳米管分散机理,纤维凝固过程,以及后处理工艺。
-
中科院苏州纳米所《AFM》:坚固耐用的多功能异质结构碳纳米复合材料,对恶劣环境具有多种适应性
目前,研究仅限于实验室的小规模制备。如果能够实现规模化准备,多功能应用前景将得到更好的实现。因此,所提出的异质结构碳纳米复合薄膜被证明具有用于下一代轻质、耐高温和弹性导向的形状转换材料的前景,适用于先进的航空航天应用。
-
卢晓波、宋志达、刘阳等在转角石墨烯中发现关联电荷密度波绝缘态
在该工作中,研究团队对器件进行了低温电输运的测量。通过对器件施加顶栅电压和底栅电压,样品表现出了一系列强的绝缘态(图1f-g)。通过量子霍尔效应对两栅极的电容进行标定后,研究团队将电阻通以莫尔填充数ν和垂直方向的电位移电场D展示出来(图2a)。
-
北大《JMCC》:N,S掺杂对氧化石墨烯气凝胶吸附和光催化还原二氧化碳的影响
本研究设计的掺杂杂原子的GO气凝胶具有高比表面积和丰富的催化位点,能够有效地将二氧化碳捕集和光催化还原结合起来,在环境污染物吸附和修复方面具有潜在的应用前景。
-
北大王恩哥院士团队,石墨烯重磅Science!
使用基于 qPlus 的原子力显微镜直接成像了石墨烯和六方氮化硼表面二维水岛的原子结构和传输。由于表面静电不同,水岛的晶格与石墨烯表面不相称,但与氮化硼表面相称。石墨烯上的面积归一化静摩擦力随着水岛面积以 ~-0.58 的幂级数增加而减小,这表明存在超润滑行为。相比之下,氮化硼上的摩擦力似乎对面积不敏感。分子动力学模拟进一步表明,水岛在石墨烯上的摩擦系数可降至小于 0.01。
-
北京大学,光电探测器!Nature Communications
该研究证实,高响应度可实现大于65GHz的3dB带宽 和50 Gbit s–1的高数据流速率,并且,如此高的响应率是由于高迁移率扭转角为4.1o的tBLG的能带结构中的van Hove奇点促进了光吸收的增强