北京大学
-
Nature | 北京大学孙庆丰团队/北京师范大学何林团队共同揭示石墨烯基人工原子中的轨道杂化
在研究的实验中,这些混合轨道在实际空间中直接可视化,并且通过数值计算和解析推导都可以很好地再现。本文的研究为设计无法通过实验在真实原子上获得的人造物质开辟了一条途径。此外,所得结果启发了不同系统中量子态的渐进控制。
-
北京大学/北京理工大学ACS Nano:低成本制备大面积Au(111)单晶用于二维层状材料的外延生长!!
文章提出了一种通过异常晶粒生长过程从商业金箔制备大面积Au(111)单晶的方法。这一过程包括初始制备(100)纹理的金多晶箔,然后通过单点应力加载和在Ar/H2气氛中的应力缓解退火来演变和扩展Au(111)异常晶粒。理论模拟和实验结果表明,应力/应变和高温处理在H2气氛中诱导中间无序状态,促进从多晶Au(100)箔到单晶Au(111)箔的转变。此外,所得的Au(111)箔已被用作模型衬底,用于定向生长二维过渡金属二硫化物及其与石墨烯的异质结构。
-
二维异质结,再登Nature Nanotechnology!
具体而言,研究者通过构建BN/单层石墨烯/BN和BN/WSe2/单层石墨烯/WSe2/BN等异质结构,成功观察到铁电滞回现象,进一步证明铁电性与库伦屏蔽效应可以在无摩尔界面的材料中实现。这一结果为扩展铁电性材料的应用领域提供了新的思路,尤其是在集成多种功能的器件设计中,放宽了材料和设计的限制。
-
ACS Nano:用于电磁干扰屏蔽的结构功能集成石墨烯皮芳纶纤维
以芳族聚酰胺聚阴离子(APA)作为粘合剂和蚀刻剂,通过浸涂策略将石墨烯自组装到芳族聚酰胺纤维表面。分子动力学(MD)模拟结果表明,APA改性芳族聚酰胺链与石墨烯的结合能(1.3 J/m2)优于芳族聚酰胺链与石墨烯的结合能(0.2 J/m2)。APA具有更高的表面能(55.2 mJ/m2),可以蚀刻纤维表面形成凹槽,从而使石墨烯能够有效吸附和自组装到纤维表面。
-
Nature Chemistry | 北大:石墨烯-分子-石墨烯单分子接头有望助力新型纳米器件!
该团队设计并制备了一种新型的石墨烯-分子-石墨烯单分子接头(SMJ),实现了对分子导电特性的精确调控。利用高分辨率的非弹性电子隧穿谱技术,研究人员成功测量了不同化学物种在接头中的导电状态,并揭示了化学反应过程中的实时电流变化。
-
Nature Nanotechnology | 北京大学,科学家揭示石墨烯单分子电学检测平台在单催化剂中的创新应用!
该团队设计并制备了基于单一催化剂的电学检测平台,成功实现了对环闭合复分解(RCM)反应路径的可视化。通过这种平台,研究人员不仅揭示了生产性路径和隐藏的退化路径,而且发现传统上被认为不希望出现的退化路径对生产性路径具有意外的建设性耦合作用。进一步研究表明,外部电场可以有效调控这两种路径,从而精确控制反应进程。
-
【Nat. Commun.】利用石墨烯量子点实现不同耦合强度的相对论性人工分子
北京师范大学何林教授课题组和北京大学的孙庆丰教授课题组合作,通过扫描隧道显微镜(STM)的针尖操纵技术,实现了在纳米级精度上连续调节两个石墨烯/硒化钨异质结量子点(GQDs)之间的距离,从而系统的研究了从相对论性人工原子到相对论性人工分子的耦合过程。
-
北京大学,Science!
石墨烯的独特性质使其在电子、光电子和能源存储等领域具有广泛的应用潜力,但高昂的生产成本和技术瓶颈阻碍了其大规模商业化。因此,开发与现有制造工艺兼容的生产流程至关重要,这不仅可以降低成本,还能提高生产效率。此外,建立统一的行业标准和高通量表征技术对于确保产品质量和性能一致性也是必要的。这将有助于推动石墨烯及其衍生物的产业化进程,使其更快地应用于实际产品中,满足市场需求。
-
宋志达课题组在魔角石墨烯超导机理中取得重要进展
该理论认为,尽管配对通道不同,魔角石墨烯中的配对机制十分类似于三价富勒烯化合物(A3C60)中的配对机制,而后者被认为是一种电声子耦合引起的、库伦排斥协同的非常规超导。在技术上,该理论利用场论中的Ward恒等式证明:尽管魔角石墨烯中的库伦排斥远强于光学声子引起的微弱吸引相互作用,但重整化后的准粒子相互作用必然存在配对项。
-
彭海琳课题组与合作者报道自组装超结构电镜载网抑制冷冻制样中的气液界面效应
研究团队基于硬脂酸分子在石墨烯表面的自组装行为,获得液面上自支撑的大面积石墨烯薄膜,即GSAMs,制得的石墨烯电镜载网能有效抑制冷冻电镜制样中的气液界面效应。该方法简单易行,且避免了传统的高分子辅助转移法带来的污染。基于此,研究团队实现了悬空石墨烯电镜支撑膜的批量制备,其悬空膜完整度高达99.5%。
-
医学破局,石墨烯又立大功
团队展示了一种可穿戴、可快速制造、增强稳定性的闭环贴片,用于糖尿病管理。团队制备了石墨烯-PB墨水,并将其沉积在微针上,以用作工作电极和参比/对电极,使该过程能够快速、廉价且适合大规模生产。
-
张锦院士团队:石墨烯新应用!
综上所述,本研究设计了一个冷壁PECVD系统,该系统不仅可以通过耦合电场使VG垂直于底物生长,而且可以在低温下生长。此外,VG涂层Ti纤维作为FSEC电极表现出超快的速率性能和良好的电容性能。FSECs在120 Hz下具有良好的CV值和相角,具有任意的交流滤波性能,优于大多数已报道的光纤基电化学电容器。这项工作证明了VG在可穿戴电子设备中用于光纤电极的巨大潜力。
-
启用科研大楼,入驻首批项目 万华“牵手”北大共研发
8月15日,烟台黄渤海新区磁山脚下,北京大学-万华化学联合研究中心科研大楼启用暨首批项目入驻仪式在万华全球研发中心二期举行。仪式当天,北大石墨烯应用实验室正式入驻,另外6个科研项目正在加快推进。
-
北大/北京石墨烯研究院《NAT COMMUN》:稳定量产!大规模生产石墨烯蒙烯氧化铝纤维/织物 ,用于电加热和EMI屏蔽等
在本研究中,通过在市场上可买到的非金属 AF/AFF 基底上直接进行石墨烯 CVD 生长,开创了GAF/GAFF的先河。值得注意的是,在γ-Al2O3-AF 上生长石墨烯的过程中,首次在非金属衬底上发现了石墨烯独特的 VSS 生长模式,这与在传统催化惰性非金属衬底上观察到的众所周知的 VS 生长模式截然不同,从而导致了石墨烯相对快速的低温生长。所提出的 VSS 生长模型大大推进了我们对非金属基底上石墨烯 CVD 生长的理解。除了实验室水平的 GAFF 制备,我们还实现了大规模 GAFF 的稳定量产。
-
四通道石墨烯光接收机
该研究实现了零偏压石墨烯光电探测器的阵列集成,展示了高质量机械剥离石墨烯和低接触电阻的石墨烯-金属边接触应用于规模化光子集成回路的可能,对提升面向链路级的石墨烯光电探测器的器件性能具有重要指导意义,同时,为CVD生长石墨烯和机械剥离石墨烯应用于硅基光子集成回路提供了一种高一致性策略,可以促进基于石墨烯的硅基有源光子集成芯片的发展。