刘灿
-
华南师范大学张振:纤维素纳米晶和氧化石墨烯共乳化Pickering乳液制备光热相变微胶囊用于太阳能和热能存储
该团队以纤维素纳米晶(CNC)和氧化石墨烯(GO)共稳定的PCM Pickering乳液为模板,制备了以密胺树脂(MF)为壳层具有光热转换性能的PCM微胶囊。CNC具有优异的Pickering乳化能力,可促进GO在油水界面的固定,从而构筑了CNC和GO共稳定的PCM Pickering乳液。然后通过多巴胺的氧化自聚合、MF前驱体的原位聚合和交联,在CNC和GO共稳定的PCM Pickering乳液表面原位形成聚多巴胺(PDA)层和MF壳层。由于多巴胺的还原作用,GO被还原为还原氧化石墨烯(rGO)。所制备的 PCM@CNC/rGO/PDA/MF微胶囊具有均匀的微米级尺寸、优异的防漏性能、高相变焓(175.4 J/g)和高PCM芯材含量(84.2%)。而且rGO和PDA 的存在使PCM微胶囊具有出色的光热转换性能。在1 W cm-2的光照下,PCM@CNC/rGO/PDA/MF微胶囊浆料(15 wt.%)的温度可高达到73 ℃。因此,光热PCM@CNC/rGO/PDA/MF微胶囊可应用于太阳能收集、热能储存和释放,在节能建筑和智能纺织品等领域具有广泛的应用前景。
-
特定角度的大片双层石墨烯面世,北大校友采用“预堆叠衬底”策略,推动转角二维材料的大面积可控制备
利用“预堆叠衬底-角度复制单晶生长”策略,研究团队精准制备了具备角度设计功能的厘米级双层转角石墨烯(精度<1°),为未来转角电子学规模化集成应用提供了材料定制路线。
-
石墨烯,又一篇Nature Materials!
本文开发了一种有效的策略来制备厘米级的任意扭角(精度<1.0°)的TBG。精确的角度控制是通过从两个预定位的单晶Cu(111)箔的角度复制形成Cu/TBG/Cu夹心结构来实现的,然后通过特定的等电势表面刻蚀工艺从该结构中分离出TBG。通过全面的表征技术(即光学光谱、电子显微镜、光电子能谱和光电流光谱),本文清楚地证明了扭角的准确性和一致性。本文的工作为大规模二维扭曲双层的设计和制备开辟了一条途径,从而为未来扭转电子学在大规模集成的应用奠定了基础。