冯建东

  • 仿生石墨烯纳米孔中浓度依赖的动态离子电导切换行为

    研究人员通过这一项目在仿生石墨烯纳米孔中系统地研究了浓度依赖的离子门控传输行为,并采用分子动力学研究了离子可逆吸脱附机理的物理图像,为生物体系离子通道中的物质传输提供了新的理解。

    2022年5月5日 科研进展
    1.1K00
  • 冯建东Sci. Adv.:石墨烯纳米孔中的非线性电流体动力离子输运

    通过实验,研究人员使用单个石墨烯纳米孔中的极限薄势垒通过实验首次探索了压敏离子传输现象。离子传导的这种压力调制涉及非线性电流体力学耦合,这是线性电动力学理论的经典图像所无法预测的。作者在各种条件下进行了大量实验,一致地观察到单层石墨烯纳米孔中的非线性调制。MD模拟显示,这种现象是由于在电压和压力驱动的输运下,石墨烯膜两侧离子的强电容性积累引起的。因此,这项工作为在纳米尺度上实现对离子传输的主动控制和开发先进的仿生离子器件的有效压力敏感性开辟了一个新的维度。

    2022年2月20日 科研进展
    1.2K00
  • Sci Adv:石墨烯纳米孔非线性电动力离子输运

    神经组织机械敏感度是生物组织的离子通道一种基本功能,合成一种人工纳米流体系统进行模拟这种生物离子通道体系能够改善对生物离子通道的理解和应用。与纳米狭缝或者纳米管中的电流体动力离子输运相比,在单原子尺度通道中实现将流体动力学与离子输运实现耦合仍非常困难。

    2022年1月21日
    1.1K00
  • Sci Adv:石墨烯纳米孔非线性电动力离子输运

    神经组织机械敏感度是生物组织的离子通道一种基本功能,合成一种人工纳米流体系统进行模拟这种生物离子通道体系能够改善对生物离子通道的理解和应用。与纳米狭缝或者纳米管中的电流体动力离子输运相比,在单原子尺度通道中实现将流体动力学与离子输运实现耦合仍非常困难。

    2022年1月18日
    1.2K00
客服

电话:134 0537 7819
邮箱:87760537@qq.com

返回顶部