东华大学
-
东华大学《J ALLOY COMPD》:可压缩/弹性Ti3C2Tx MXene/RGO/CNC复合气凝胶,用于吸收电磁波
综上所述,通过定向冷冻干燥和肼蒸气处理,成功制备了一种由 MXene/RGO和CNC组成的新型复合气凝胶。交联网络完全通过静电自组装实现。
-
东华大学《ACS Nano》:直接合成弹性和可拉伸的分层结构纤维和石墨烯基海绵以降低噪音
还原氧化石墨烯(rGO)纳米片与超细纤维之间独特的物理缠结赋予了分层振动结构纤维海绵(VSFSs)优异的力学性能,它可以承受较大的剪切应变(60%)和拉伸应力(6000 倍重量)而不损坏,1000 次压缩后几乎没有塑性变形。由于超薄石墨烯基振动器的振动效应和多孔纤维网的粘性摩擦效应,VSFS 同时实现了良好的低频吸音(680 Hz 时吸音系数为 0.98)和高频吸音(2000-6300 Hz 时吸音系数大于 0.8)。此外,轻质 VSFS(厚度为 30 毫米)的降噪系数(NRC)达到0.63,可将高分贝噪音降低24.4分贝,为开发理想的吸音材料提供了潜在的解决方案。
-
SCMs|具有自适应机械弹性的纳米纤维互锁多孔石墨烯复合气凝胶用于高度可逆的无枝晶锂金属负极
近日,东华大学刘天西教授和缪月娥副教授等人在Science China Materials发表研究论文,制备了具有自适应机械弹性的聚酰亚胺纳米纤维互锁多孔石墨烯复合气凝胶(PI-HGCA),将其作为复合主体结构用于容纳锂金属。
-
市级荣誉!上海超碳科技孵化器入选上海市海聚英才创新创业示范基地!孵化器内企业和团队新增3项获奖!
上海利势凯美科技有限公司的“功能性聚酰亚胺新材料项目”、上海优烯实业有限公司的“石墨烯电热转换技术及其产业化应用”项目和东华大学侯成义研究员团队的“石墨烯复合水凝胶脑电界面材料”项目,均获得大赛三等奖。
-
东华大学Yitian Peng等–原子层石墨烯上摩擦力的灵活调控
FDTS SAMs修饰的探针的疏水特性通过减少界面附着力和防止毛细管相互作用的影响而减少了摩擦力;因此,由于压痕深度减少,从而减少了界面接触面积,摩擦力随着PDMS基体弹性模量的增加而减少;同时,随着石墨烯厚度的增加,平面外刚度的增强有效地降低了界面接触质量。通过理论计算,从接触区周围的法向和侧向变形产生的摩擦力方面,进一步验证了石墨烯上摩擦力的灵活调整。
-
东华大学材料科学与工程学院–一锅法合成氧化锡还原氧化石墨烯复合涂层织物用于快速响应/恢复速率的穿戴式氨传感器
结果表明:复合涂层中SnO2纳米颗粒的平均尺寸约为3 nm, SnO2与rGO之间存在较强的界面相互作用。因此,PI-SnO2/rGO对NH3表现出n型敏感,在50- 400ppm范围内具有良好的线性响应(R2 =0.995),高灵敏度(100ppm NH3为5.16%),快速响应/回收率(94 s/57 s)和优异的选择性。此外,该传感器具有良好的机械鲁棒性。2000次拉伸后,灵敏度仅下降3%。
-
3项获奖!超碳科技孵化器内这两家企业和这个团队的共3个项目,在2022第二届宝山“科创杯”创新创业大赛中获奖!
超碳科技孵化器内2家入驻企业以及1个入驻团队的共3个项目:上海利势凯美科技有限公司的“功能性聚酰亚胺新材料项目”、上海优烯实业有限公司的“石墨烯电热转换技术及其产业化应用”项目和东华大学侯成义研究员团队的“石墨烯复合水凝胶脑电界面材料”项目,均获得大赛三等奖。
-
Angew:石墨烯“铠甲”保护,助力铁纳米颗粒持久电催化硝酸盐还原制氮
近日,东华大学杨建平研究员通过简单的水热方法和原位热还原策略,成功制备了一种超薄石墨烯纳米片作为铠甲层来保护铁纳米颗粒(Fe@Gnc)。
-
东华大学纺织学院chunhong lu 等–石墨烯基复合纤维的三维导电网络对增强纤维超级电容器的电化学和韧性性能
这些性能归因于石墨烯片内的三维交联导电网络,通过酸化碳纳米管、石墨烯片和MXene之间的共价键和π – π相互作用,这大大提高了CMG纤维的抗拉强度、韧性和电传输。优化后的CMG纤维具有高韧性(约1.7 MJ m−3)和高电导率(约420 S cm−1),分别是还原氧化石墨烯纤维的4倍和2倍。基于优化的CMG光纤组装的FSSC具有237 mF cm−2的面积电容和85%的良好率性能。
-
东华大学机械工程学院彭倚天教授装备载流界面摩擦取得系列进展
课题组基于导电原子力显微镜的石墨烯表面摩擦研究,发现了石墨烯和基底之间界面水分子的冰状水结构对石墨烯表面较低的摩擦力具有关键作用。提出了外电场作用下界面水分子从冰状水状态转化为液态,产生聚集,从而增大石墨烯表面摩擦力的机理。研究有助于石墨烯在机械载流界面的减摩应用。
-
东华大学Yitian Peng等–界面水在电场中石墨烯摩擦学行为中的作用
电场中的摩擦特性对于石墨烯作为固体润滑剂在石墨烯基微/纳机电系统中的应用非常重要。基于导电原子力显微镜的研究表明,石墨烯与SiO2/Si衬底之间的界面水会影响石墨烯在电场中的摩擦。没有施加电压的摩擦仍然很低,因为界面水保持稳定的冰状网络。但是,施加电压后的摩擦力会增加,因为极性水分子会被电场吸引并聚集在尖端周围。聚集的界面水不仅增加了石墨烯的变形,而且在摩擦滑动过程中还被尖端推动,从而导致摩擦力增加。这些研究为石墨烯作为固体润滑剂在电场中的应用提供了有益的指导。
-
东华大学俞建勇院士/丁彬教授《AFM》:三元多孔共轭的卤胺纳米纤维/石墨烯气凝胶用于降解芥子气
东华大学俞建勇院士、丁彬教授、斯阳研究员、代子荐博士团队利用二维还原氧化石墨烯(rGO)纳米片和分子笼基卤胺纳米纤维制备了一种三元多孔共轭的超弹多级气凝胶(HNAs),可有效地捕获芥子气并将其转化为无毒产物。
-
东华大学《Carbon》:聚酰亚胺树脂修饰膨胀石墨制备高导热复合材料,具有优异电磁屏蔽性能
总之,提出了一种制备具有优异导热性和超高 EMI 屏蔽效率的 PI 基功能复合材料的有用方法。由于EG和PI具有优异的耐热性和耐化学性,EG-PDA/PI复合材料的高导热性和电磁干扰屏蔽性能可以在恶劣环境中处理后保持。因此,所得PI基复合材料的多功能性为这些材料在集成电子设备和通信系统中应用以解决其“过热”和电磁污染问题提供了光明的前景。
-
角蛋白/氧化石墨烯纳米复合材料实现高性能假发
东华大学杨光教授团队描述了一种通过Langmuir-Blodgett(LB)技术,使用由头发衍生的角蛋白和氧化石墨烯(Ker/GO)组成的纳米复合材料对假发进行表面涂层的新策略。与传统使用的浸没方法相比,该策略通过紧密堆积的结构和受控的涂层沉积层实现了显着更高的表面覆盖率,从而提供了高性能,包括大大增强的抗紫外线(UV)、抗静电、散热、吸湿性、保湿性和耐洗涤性,适用于人发和合成纤维假发。
-
东华大学《NJC》:B-SiOC纳米球封装导电石墨烯薄膜,实现锂离子电池的循环稳定性
东华大学杨建平研究员团队研究开发了一种受限的自组装工艺,将掺硼的SiOC(B-SiOC)纳米球封装到导电石墨烯薄膜(B-SiOC@G)中。结果表明,B-SiOC@G是一种很有前途的高稳定性锂离子电池负极材料。