超级电容器
-
西安交通大学:易于组装柔韧、可拉伸和可连接的对称微型超级电容器,具有宽工作电压窗口和良好的耐用性
研究通过将激光直写石墨烯(LG)电极与磷酸-非离子表面活性剂液晶(PA-NI LC)凝胶电解质相结合,开发出了可在宽工作电压窗口工作的柔性对称微型超级电容器(MSC)。为了增加 MSC 器件的柔性并提高其与各向异性表面的保形能力,在聚酰亚胺(PI)薄膜表面形成相互咬合的石墨烯后,进一步将器件转移到柔性、可拉伸和透明的聚二甲基硅氧烷(PDMS)基底上;该基底在弯曲测试中显示出良好的柔性和机械特性。
-
德国卡尔斯鲁厄理工学院Jan G. Korvink 课题组–蜡烛碳烟纳米颗粒增强激光诱导石墨烯超级电容器性能
材料表征表明,退火工艺使纳米颗粒与LIG材料之间建立了牢固的连接,并增强了纳米颗粒的石墨化。制备的超级电容器在0.1 mA/cm2下的最大比电容为15.1 mF/cm2,最大能量密度为2.1 μWh/cm2,功率密度为50 μW/cm2。值得注意的是,蜡烛烟灰和LIG的协同活性超过了先前报道的基于LIG的超级电容器的性能。此外,该器件的循环稳定性表明,在10000次循环中,电容保持率为80%,库仑效率为100%。
-
浦项科技大学Byoungwoo Kang课题组–溶剂专用等离子体处理三维石墨烯泡沫的超快可逆超润湿性转换
由于3D GFs是由非极性丙酮蒸汽或极性水蒸汽制备的,短微波辐射(≤10 s)分别导致等离子体热点介导的甲基自由基和羟基自由基的产生。在自由基的直接化学吸附下,三维表面变成超疏水(水接触角= ~ 170°)或超亲水性(~ 0°),有趣的是,由于先前化学吸附的自由基和新引入的自由基之间通过形成甲醇样中间体进行容易的交换,润湿性转变可以重复多次。当将不同表面极性的三维石墨烯与非极性离子液体或极性水溶液电解质结合到电双层电容器中时,石墨烯表面与电解质的极性匹配比其在≥0.5 A g-1时的不匹配电容高≥548.0倍,证明了润湿性控制三维石墨烯的重要性。
-
PNSMI Best Paper | 石墨烯/二氧化锰/黑磷复合电极材料适用高性能微型超级电容器
本研究采用简单水浴法在单层石墨烯表面生长MnO2纳米片,在制浆过程中引入二维黑磷,制备了石墨烯/MnO2复合材料。并采用丝网印刷技术,使用该复合材料制备同心圆形微型超级电容器(CCMSCs)。
-
ACS AEM:高性能Ni(II)@胺功能化石墨烯氧化物复合物作为超级电容器电极的理论与实验研究
在这项研究中,研究者们成功地合成了一种新型的Ni(II)@胺功能化石墨烯氧化物复合物(Ni@A-GO),并将其作为超级电容器电极进行了深入研究。
-
安徽大学《Small》:2D MXene和石墨烯层状结构层压,用于高性能全固态超级电容器
这项研究的结果从根本上揭示了作为固体电解质的 GO 以及假电容性 MXene 的结构特性和电化学性质,并为设计全固态柔性电子器件(如使用 MXene-GO 组合的湿敏探测器或柔性储能器件)提供了指导。
-
江苏大学《CEJ》:在掺硼石墨烯气凝胶上构建电子互动CoMoO4@CoP核壳结构,用于高柔性超级电容器
与传统的石墨烯电极材料相比,BGA 不仅能激活硼相邻碳原子产生假电容,还能加速电解质离子的纵向转移。由于 CoMoO4 和 CoP 异质界面之间的电子耦合效应和界面协同效应,CoMoO4@CoP/BGA 表现出理想的比电容(1 A/g 时为 3056.3F/g)和优异的长期循环性能(10,000 次循环后仍保持初始电容的 88.4%)。BGA 阴极也表现出更强的性能,1 A/g 时的比电容为 431.7F/g,远高于文献报道的碳材料。最后,在 10 A/g 的高电流密度下,CoMoO4@CoP/BGA/BGA HCS 器件表现出卓越的循环稳定性(10,000 次工作循环后比电容保持率为 95.6%)。此外,在功率密度为 800.0 W kg-1 时,该 HCS 器件显示出 50.2 Wh kg-1 的高能量密度。
-
中科院上海硅酸盐所《ACS Nano》:硫功能化碳纳米管与镶嵌纳米石墨烯,用于3D打印微型超级电容器和灵活的自供电传感系统
这项工作不仅为开发高性能微型超级电容器提供了一种前景广阔的方法,而且为创建先进的可穿戴/柔性微电子系统奠定了基础。
-
伊斯兰堡国际伊斯兰大学–便携式能源:用于可穿戴超级电容器的V2O5-pBOA-石墨烯纳米复合材料
新兴的可穿戴电子设备领域推动了对先进储能方案的需求。其中,可穿戴超级电容器因其高稳定性、快速充放电能力和成本效益等固有优势而备受关注。本文揭示了柔性和可穿戴超级电容器的最新进展,重点介绍了新型V2O5-pBOA -石墨烯纳米复合材料的卓越性能。
-
西安交通大学:综述!水性混合超级电容器用柔性电极的最新进展与展望
回顾并总结了基于多孔金属载体、碳基板(包括碳纳米管网络)、石墨烯和可穿戴碳(碳纤维、碳布、碳纤维布等)的柔性电极材料以及高性能AHS的其他柔性材料的最新进展。这些柔性电极具有独特的构型和优化的界面结构,使AHS在各种恶劣条件下具有优异的电化学性能和优异的机械稳定性,具有巨大的实际应用潜力。此外,还概述和讨论了构建具有新颖构型和AHS的柔性电极的未来方向和前景
-
石墨烯的力量:EnyGy 在超级电容器技术领域的飞跃
“我们开发了一种独特的纳米工程策略来操纵单个石墨烯片,并控制亚纳米级的片间间距和相互作用。这就实现了石墨烯基电极薄膜的紧凑储能能力”,enyGy 附属公司的 Dan Li 教授解释说。
-
中国海洋大学《储能材料》:独特介孔率、石墨结构的碳电极,用于锌空气电池和超级电容器
本文通过利用 MnCl₂模板和孔隙形成剂的双重作用,我们成功地设计出了一种具有独特介孔率、石墨结构和原子分散的 MnN₂C₂活性位点的碳电极。这一设计突破显著提高了锌空气电池和超级电容器的效率。
-
武汉工程大学《AMT》:石墨烯包裹在碳布上的聚吡咯,用于高性能柔性固态超级电容器
研究以MnO2作为氧化剂在OCC表面聚合吡咯,然后吸附和还原氧化石墨烯 (GO),制备出包裹聚吡咯 (PPy) / 氧化碳布 (OCC) 的还原氧化石墨烯 (rGO)(rGO@PPy/OCC)。
-
中科美锦:玉米淀粉变身高端新材料
作为超级电容器的核心原材料,超级电容炭的品质直接决定了超级电容器的工作能力及使用寿命。过去,国内使用的超级电容炭以进口为主,从2015年起,中国科学院山西煤炭化学研究所投身电容炭国产化技术的攻关工作之中,在上百种原材料中一个个试,经过无数的试错,终于找到了最理想的原材料——玉米淀粉,并成功将产品从实验室搬进了工厂。
-
南通大学《Carbon》:石墨烯异质结构纤维,用于柔性固态超级电容器
质子化 GO 和 g-C3N4 纳米片通过静电自组装,两种构件通过范德华力和分子间 H2 键牢固地结合成一个整体,有效地防止了 g-C3N4 从 GO 纳米片上脱落,并在反复的电化学和机械循环中保持了电极结构的完整性。g-C3N4/RGO 异质结构 FE 的电导率、机械性能、SSA 值和活性位点都有明显提高,因此具有很高的容积电容、优异的速率性能以及出色的电化学和机械循环稳定性。