传感器
-
苏大/纺大《ACS Sens》:基于芯鞘复合纱线和石墨烯涂层气凝胶的传感器,用于消防作业和救援等
我们采用传统的纺织路线进行独特的结构设计,没有相互传感干扰,其中交叉排列的芯-鞘复合纱线交错在织物中,可以通过电容原理监测压力刺激,阵列石墨烯涂层气凝胶通过CNT粘胶电极纱线连接,然后嵌入两层织物,通过电阻机制感知不同的温度。
-
一个世纪理论的新转折提升了生物启发材料高效传质的潜力
研究人员利用石墨烯气凝胶证明了他们的理论。他们通过控制材料中冰晶的生长,精心改变了孔隙的大小和形状。他们的实验表明,遵循新提出的通用Murray定律的微观通道对流体流动的阻力最小,而偏离该定律的通道则会增加流动阻力。
-
塞浦路斯研究中心率先开展医疗诊断项目
MultiLab 项目旨在通过创建任何人都能快速使用的易用型传感器来解决这些局限性。MultiLab 项目由 CyRIC 负责协调,是欧盟地平线欧洲计划的一部分。该项目于 2024 年 1 月 1 日启动,为期四年。
-
鲁东大学《ACS AMI》:新方法-低成本、高效率、高灵敏度的柔性仿生应变传感器
研究者利用机器学习简化了激光诱导石墨烯的制备流程,利用激光在Ecoflex/LIG膜表面构建仿生蜘蛛网结构,利用该结构制备了具有蜘蛛网结构的柔性应变传感器。该制备方法不受任何条件限制,具有广泛的适用性。
-
大连工业大学《ACS AEM》:石墨烯互锁碳化丝瓜络,用于能量收集和生理信号监测
研究还原氧化石墨烯(rGO)纳米片交错的碳化丝瓜络构建了高导电性水凝胶,作为自供电传感系统中的传感器模块和三电纳米发电机(TENG)模块。
-
江南大学《ACS Sens》:受编织技术的启发,一种碳纳米管-石墨烯混合编织膜,用于航空航天、纳米保护装置等
由于 CGWS 石墨烯薄膜独特的异质结层次结构,所获得的压力传感器在低压下表现出很高的灵敏度(>1.0 kPa-1)。该传感器可根据施加在不同物体上的压力绘制相对热导率图,从而提供空间信息。我们的研究结果揭示了织物自下而上的设计及其优异的传感性能,有望应用于航空航天、纳米保护装置等领域。
-
浙大高超课题组《Small》:高柔韧性和超弹性石墨烯纳米纤维气凝胶,用于智能手语
这种机械稳健性源于其跨尺度多孔结构,该结构由双曲微孔和多孔纳米纤维组成,具有较大的弹性变形能力。研究进一步揭示了柔性和超弹性GNFA 作为电传感器在检测拉伸和弯曲变形方面表现出的高灵敏度和超稳定性。将GNFA 传感器安装到人的手指上,并通过多层人工神经网络实现了高精度的手语智能识别,就是最好的证明。这项研究提出了一种高柔性、高弹性的石墨烯气凝胶,可用于传感器技术中的可穿戴人机界面。
-
Tachmed 与伦敦大学圣乔治学院合作
“远程健康监测仍处于起步阶段,传统的监测设备主要用于测量体重、血压、血氧水平和血糖。Tachmed 系统在此基础上增加了高质量诊断功能,大大扩展了可在家中进行的健康检测范围,并可与全科医生或医院直接连接。这就避免了不必要的全科医生就诊,加快了治疗速度,特别是对于那些生活繁忙或行动不便的人来说。
-
食环学院:开展“导电聚合物/石墨烯纳米复合薄膜的声表面波甲醛气体传感技术研究进展”专题讲座
在本次讲座中,汪老师由“什么是材料”作为切入点开始讲解,按照人类社会发展进程的时间顺序介绍了材料的发展历程、材料的种类,讲座的最后结合汪老师自己的研究方向对复合材料气体传感技术的研究进展向同学们做了重点的介绍。
-
未来的心脏监护仪可以剥离和粘贴
Kireev 的目标是制造两种设备:一种是可以轻松贴在皮肤上的可穿戴设备,另一种是可植入设备。这些监测器的目的是了解动脉僵化和动脉粥样硬化的情况,这是导致高血压、中风和冠状动脉疾病等更严重心血管疾病的核心问题。
-
【CCL文章推荐】激光诱导石墨烯智能传感器用于儿茶酚异构体的多重探测
本文报道了利用激光直写加工技术和丝网印刷技术实现了在聚酰亚胺(PI)薄膜上大规模制备三电极体系的LIG电化学传感器(LIGS)。通过对其电化学性能的评估,LIGS具有显著的电催化性能,具有替代传统玻碳电极、丝网印刷电极的潜质。此外,将LIGS用于检测对苯二酚(1,4-二羟基苯,HQ)、邻苯二酚(1,2-二羟基苯,CC)和间苯二酚(1,3-二羟基苯,RC),LIGS表现出优异的检测性能。
-
综述:基于石墨烯的触觉传感器研究进展
这篇综述文章介绍了基于纯石墨烯、氧化石墨烯和还原氧化石墨烯三种形态制备触觉传感器的技术路线,通过各种印刷技术,将不同形态的石墨烯与聚合物基底结合,形成单层及多层结构的传感器薄膜。这些传感器在机器人触觉等领域得到了广泛应用。
-
北化工《J POLYM RES》:结合3D打印和冻干法制备的碳纳米管/石墨烯纳米片压力传感器
研究提出了一种基于水凝胶的碳纳米管/石墨烯纳米片/聚二甲基硅氧烷(CNT/GNP/PDMS命名为CGP)压力传感器,采用直接墨迹三维(DIW 3D)打印和冷冻干燥方法制备。
-
石墨烯生物传感器如何为生物标记物检测带来变革
它的高比表面积使各种生物分子得以附着。最终,正是通过石墨烯的表面,传感器的灵敏度和特异性才得以提高。其出色的电子传输能力可快速检测生物标记物,提供实时诊断和监测。石墨烯固有的强度和灵活性进一步促进了可穿戴石墨烯生物传感器的开发,使健康监测与日常生活完美结合。
-
北航《Carbon》:激光诱导石墨烯和微接触相结合的打印技术,用于处理面向多功能电子设备的可扩展和可堆叠的微条纹图案
通过微尺寸晶片和 PDMS 印章,我们成功地合成了具有可控微纳图案的μPI和μLIG。通过调节 PAA 的浓度(4-8 wt%),由于 PAA 在微条纹阵列上的累积和浓缩,微图案的特征尺寸可从宽度 5.36 μm 逐渐增加到 22.44 μm,高度从 69.81 nm 增加到 187.39 nm,从而制造出各种可调微纳尺寸的图案结构。同时,作为激光能量输入的关键变量,通过散焦水平和激光功率调整的激光通量在微图案中发挥了关键作用,从而实现了高度(5.72 – 48.61 μm)和薄片电阻(634.1 – 1.9 kΩ/sq)的可控,有利于微型电子器件的发展。