传感器
-
曼彻斯特大学李加深团队《ACS AMI》:硝化纤维素(火棉)- 石墨烯温度传感器
这种石墨烯/NC温度传感器在常温下保持绝缘状态,一旦遇到高温(例如遇到火情),即可快速转变为导电状态。得益于NC在高温下的快速化学反应,这种传感器的响应时间很短。以石墨烯/ NC(1:9,wt%)温度传感器为例,它可以在高达200 ℃的室温下保持稳定绝缘状态,一旦环境温度超过其响应温度(232℃),在4.4秒内即可发出警报。此外,该温度传感报警器可以通过调节石墨烯/ NC的比例来调整其响应温度及时间,适用于不同的环境要求,在室内和室外环境下都具有极大应用潜力,可以运用在涂料、壁纸等复合材料中。另外还需要强调的是,由于NC高温热解不受限于其它外界条件,因此该温度传感报警器还可以在极端条件下工作,例如水下、惰性气体氛围、甚至真空状态中。
-
灵敏感知水下环境,这种传感器“长”了鱼侧线
“团队先构筑了石墨烯/Ecoflex复合薄膜,其中Ecoflex是一种生物相容性极好的弹性体。”肖鹏介绍,由此开发的仿鱼侧线水下传感器主要由石墨烯/Ecoflex复合薄膜、PET塑料模具、电极及导线四部分构成。
-
重大/清华/北科大《Carbon》:Nomex纸基双面激光诱导石墨烯,用于多功能人机界面
通过简单地组装三层双面激光定制的Nomex纸来实现接收指令(压力感应能力)和提供反馈(发声能力)的功能集成。该集成器件不仅对类似于轻柔手指按压(约10kPa)的压力具有灵敏的响应(约50ms响应时间),而且可以发出具有更大声音的高质量声音信号压力水平(约70分贝在1W/cm2功率密度)。此外,还展示了两个概念验证演示,即按音频垫和响应命令的耳机,以证实信息交换活动的可行性。
-
宾州州立大学新研究推动可穿戴医疗传感器发展:自供电、无线、防潮
Cheng和他的团队应用这项技术制造了一种基于多孔石墨烯泡沫材料的自供电可拉伸健康监测仪。利用激光技术,制造商可以以低成本制造出各种形状的层状石墨烯泡沫材料。当被以合适的架构使用时,石墨烯可以从运动(如人体运动)中获取能量,并将其作为电能存储在微型超级电容器中。
-
科学家在二维材料中“看到”非均匀性:或将带来微型药物传感器
研究人员使用一种由石墨烯(石墨的二维材料版本)和无机化合物二硫化钼组成的异质结构材料进行了实验。二硫化钼则给出了一个光致发光信号,这可以检测石墨烯和二硫化钼层之间电荷转移的数量。因此,它可以检测到由于生物分析物的变化,在这种情况下是癌症治疗药物多柔比星,它可以影响电荷。
-
Graphenea的Cardell S2X使传感变得容易
石墨烯场效应晶体管(GFET)对周围环境具有前所未有的灵敏度,是各种传感应用的理想传感器。根据应用的不同,GFET可以调整为仅对感兴趣的刺激敏感,并在石墨烯器件研究,生物传感器,临床前测试,医疗保健和护理点(PoC)应用等领域显示出突破性的性能。随着Graphenea的GFET S系列器件以及现在的Carled S2X的推出,我们消除了对可靠制造和测量的担忧,让我们的客户专注于他们选择的传感应用。
-
将基于石墨烯技术的优势带入工业编码器
Paragraf开创的石墨烯霍尔效应传感器(GHS)技术为希望使其产品与众不同的编码器制造商提供了非常明显的优势,并确保它们被设计到下一代机床中。由于其石墨烯传感器元件的独特性能,Paragraf GHS器件克服了与传统磁性传感器相关的问题。
-
石墨烯量子点有助于阻止SARS-CoV-2变体进入细胞
石墨烯量子点的发展是一项新颖的创新,包括石墨烯晶格以及由于量子约束和边缘效应而表现出尺寸依赖性发光特性的石墨烯片。这些GQD由表面基团组成,包括羧基,环氧树脂和羟基,它们表明高水溶性,高表面积以及高光稳定性。GQDs独特的光学性质使该候选药物在生物成像和生物传感等应用中非常有用;然而,它也可以创新地用于监测SARS-CoV-2病毒的δ变体的状态。本研究中的生物偶联GQD荧光已被用于监测刺突RBD和ACE2受体相互作用,以确定有效的结合亲和力。此外,GQDs上的官能团也被用来通过分解病毒的脂质膜并去除附着在脂质膜上的刺突蛋白来灭活病毒。
-
Paragraf在B轮融资中筹集了6000万美元
Paragraf是全球第一家利用其独特的无污染技术为石墨烯电子设备制造提供可扩展方法的公司。该公司目前的产品石墨烯霍尔效应传感器系列已经广泛应用于航空航天、半导体、医疗保健、汽车、科学研究、工业和量子计算领域。此外,该材料还具有积极的环境影响,例如降低功耗。
-
何大平/寇宗魁今日ACS Nano:超快宏观组装,高强度氧化石墨烯薄膜!
具有可持续高强度的宏观组装氧化石墨烯(GO)薄膜,在用于水净化的离子和分子过滤或用于传感器的快速响应等方面具有广阔的应用前景。传统的自下而上宏观组装制备GO膜通常通过扩大层间空间来优化,从而加快水流通过;然而,该过程通常会导致强度、组装时间和整体厚度三者出现折衷。
-
在石墨烯上打孔以提高生物传感器灵敏度
石墨烯与纳米颗粒的结合在以前的研究中已被研究为生物传感器;然而,在开发这种生物传感器的过程中,石墨烯的某些特性可能会影响传感器的检测限。因此,必须修改石墨烯的表面特异性以使其在某些分子中用于生物传感器。
-
5月24日 – 支持石墨烯的传感器和设备
Paragraf的科学家Rosie Baines将介绍石墨烯霍尔效应传感器在极端环境中的应用。
-
《The Innovation》微流控纺丝+剪切流诱导制备石墨烯涂层水凝胶微纤维
首先其核芯水凝胶微纤维从微流控装置中连续纺丝,然后通过浸涂方法产生的剪切流来形成薄的氧化石墨烯(GO)纳米片涂层外壳。由于微流控纺丝过程中的流体组分、流速以及浸涂法的提升速度都是高度可控的,因此可以精确定制所得微纤维的形貌,包括核-壳结构、导电性和热性能。这些特性使所得微纤维具有作为热传感器和运动传感器的潜力,并且它们在手势指示器中的价值也已被探索。用这种简单可控的方法产生的微纤维可以在柔性电子器件中具有广泛应用。
-
石墨烯传感器开发人员的难得机遇
在 AMO 进行的首次晶圆运行利用了该公司开发的在 200 毫米硅晶圆上制造石墨烯场效应晶体管的基准工艺。用户可以在晶圆上预订裸片,并按照一系列规格对其进行定制加工。定制选项包括局部或全局背栅,以及封装–带或不带石墨烯区域开口。除制造外,还可对建成的器件进行拉曼和电学表征。
-
原子薄的石墨烯涂层可以改变液体电子学
萨塞克斯大学数学与物理科学学院材料物理学研究员,该研究的主要作者Sean Ogilvie博士解释了这一发展背后的科学:”石墨烯等2D材料的潜力在于它们的电子特性和可加工性;我们开发了一种利用纳米片分散体的表面积来稳定具有超薄涂层的乳液液滴的工艺。