传感器

  • 文献Club| Adv. Mater.| 水溶液中超灵敏的石墨烯等离激元中红外生物传感

    本文采用可调谐石墨烯等离激元增强 FTIR 平台,调整石墨烯等离激元以识别生理条件下的纳米级蛋白质指纹。石墨烯等离激元的高度受限的光场和可调谐性可以从根本上增强光物质相互作用并减少水干扰,从而将灵敏度降低到约2 nm 厚蛋白质的值。同时,在 GP-aIR 生物传感器的帮助下展示了蛋白质分子结构上的动态和可逆的 H/D 交换。该为在复杂生理条件下以超高灵敏度实施原位研究生物过程铺平了道路,这为研究纳米生物界面提供了新的策略。

    2022年4月27日
    80200
  • 中科院兰州化物所《ACS AMI》:受弹涂鱼启发的多功能PDMS/石墨烯致动器,用于微型机器人、传感器和运动等

    由于致动膜中的光热诱导收缩应力,致动器对近红外 (NIR) 光表现出可逆且集成良好的响应,这促进了在打开和关闭NIR光时产生周期性和快速运动,例如在空气中弯曲,在液体中爬行。此外,通过合理的设备设计和光调制,机械多功能设备可以在液/气界面按照预先设计的路线可控地漂浮和游泳。更有趣的是,执行器可以以极短的响应时间(400 ms)从液体介质跳到空气,最大速度为2ms–1,在近红外光的刺激下高14.3cm。目前的工作在仿生执行器在微型机器人、传感器和运动等各个领域的应用中具有巨大的潜力。

    2022年4月25日 产业新闻
    1.1K00
  • 作为食品安全和环境监测工具的电化学生物传感器的兴起

    用于食品和环境监测的方法包括色谱法(如 HPLC(高效液相色谱法))和免疫学法(如 ELISA(酶联免疫吸附测定法))检测方法,但由于这些方法成本高、耗时长,因此仍需改进食品安全监测技术。电化学生物传感器是一种很有前途的解决方案,由于其简单、灵敏和经济实惠,非常适合食品安全监控。电化学生物传感器既可用于监测重金属和毒素等食品污染,也可用于监测空气质量等影响食品生长的环境因素。

    研报资料 2022年4月22日
    13700
  • 航天筑梦——“新材料之王”石墨烯究竟多能打

    利用石墨烯优异的力学性能,将其加入树脂、金属中可获得轻质、高载荷的航天复合材料;石墨烯优异的摩擦学性能使其有望成为新型航天润滑材料;石墨烯传感器的制备则应用了它超大比表面积的特性;此外,石墨烯的高透光性可应用于航天太阳能电池领域。

    访谈评论 2022年4月19日
    1.2K00
  • 苏州大学《AFM》:超越皮肤的压力传感器!3D打印层压石墨烯压力传感材料结合了极低的检测限和宽检测范围

    综上所述,设计并印刷了受皮肤启发的层压石墨烯压力传感材料,该材料由具有非常低弹性模量的柔软超薄壁蜂窝层和具有较高弹性模量的相对坚硬的厚壁蜂窝层组成。这种层压石墨烯压敏材料证明了将其集成到柔性大面积电子皮肤中的可行性。基于层压石墨烯制备的机器人皮肤显示了在大范围内定量检测和显示重量/压力的能力。这种以皮肤为灵感的材料结构设计理念结合了灵活便利的3D打印策略,为智能机器人的高性能压力传感设备的开发提供了一条有前途的道路。

    2022年4月18日 科研进展
    1.0K00
  • MDPI Sensors | 智能鞋垫在健康监测中的挑战与发展

    一个理想的鞋垫系统应该包含所有期望的功能,包括穿着舒适、接受信号完整、数据准确以及具有高能源效率和长电池寿命。此外,当前的挑战还必须考虑增加设计一个高性能和高效的基于鞋垫的传感器系统。基于上述讨论,作者描述了关于智能鞋垫的四个未来展望:多传感器检测相结合、智能反馈系统、使用智能纺织品、 跨学科协作。

    2022年4月17日
    1.2K00
  • 清华团队将石墨烯带进元宇宙:集成眼动交互和触觉感知的协同界面,拉伸应变可达1000%,界面厚度仅90μm

    相比传统的金属电极,结合柔性聚氨酯的蜂窝状石墨烯电极材料,具有超高的柔性和可拉伸性,拉伸应变范围可高达 1000%,并且此次采用的是基于医疗级的超薄柔性聚氨酯薄膜,本身具有高度透气性、贴附性和生物兼容性,这让电极材料与皮肤实现了完全的共形贴合,具有抗运动的长效贴附稳定性,再加上微米级孔径的蜂窝状石墨烯,电极具有优异的透气性和舒适性。

    2022年4月13日 科研进展
    1.2K00
  • 苏州科技大学《Carbon》:一种具有增强性能的喷墨打印石墨烯基柔性压力传感器的新型预沉积辅助策略

    综上所述,本文提出了一种新颖、简便的固定层预沉积策略,用于辅助喷墨打印技术限制和消除咖啡环效应。本方法揭示了石墨烯基材料在其他技术应用中的广泛喷墨打印,包括健康监测器、光学设备、能量传感器和高密度集成电路。将PDFLS应用于其他常用喷墨打印材料的沉积也是未来值得进一步探索的研究方向。

    2022年4月13日 科研进展
    1.3K00
  • 可调谐石墨烯纳米复合材料温度报警传感器

    虽然石墨烯/硝酸纤维素膜在正常状态下保持电绝缘,但在高温下会立即变为导电:一旦遇到火焰侵蚀,硝酸纤维素在高温下会迅速分解,并诱导其电阻发生明显的转变,导致报警传感器的转换过程从电绝缘转变为电子导电状态

    2022年4月11日
    1.1K00
  • 几分钟就能检测疾病?剑桥出身的Paragraf用石墨烯重新定义生物传感器

    Paragraf实现将石墨烯直接生成在半导体基板上的技术,减少转移程序节省时间,没有铜金属基底和刻蚀液的消耗,避免产生废液污染环境,最重要的是生产的石墨烯表现出高度的结构完整性,确保了石墨烯电子设备的出色性能。

    2022年4月9日
    1.1K00
  • 湖南大学《ACS AMI》:石墨烯/芳纶纳米纤维/聚苯胺纳米管气凝胶,用于压力传感器

    制备的气凝胶具有约12 mg cm -3的低密度、高导电性、良好的回弹性和高压缩性。rGO/ANF/PANIT气凝胶作为压力传感器具有1.73kPa –1的高灵敏度、低检测限 (40 Pa)、宽检测范围和出色的压缩循环稳定性,突出了在压敏电气设备中的应用前景,包括医疗健康检测、可穿戴电子、智能包装等领域。

    2022年4月8日 科研进展
    99100
  • 清华任天令课题组《ACS Nano》:简易制备蜂窝石墨烯电极阵列,用于3D人机交互的眼电图和触觉感知协作界面

    本文,清华大学任天令课题组研究提出了一个协作界面,包括眼电 (EOG) 和触觉感知,以实现快速准确的3D人机交互。EOG信号主要用于快速、方便、非接触的2D(XY轴)交互,触觉感应接口主要用于复杂的2D运动控制和3D 交互中的Z轴控制。

    2022年4月7日 科研进展
    1.1K00
  • 使用石墨烯基传感器的高分辨率电池映射图片

    Paragraf的石墨烯霍尔传感器(GHS)源自专有的直接沉积工艺,可以避免污染和结构完整性问题,GHS中传感元件由厚度仅0.34纳米的石墨烯单层构成。这些传感元件的二维特性是消除传统三维硅基霍尔传感器中存在的‘平面霍尔反应’(‘Planar Hall Effect’)。因此,GHS的性能不受杂散面内电磁场的影响。由于可以实现高磁场分辨率,即使电流密度变化相对较小的话,也可以很快查出。这意味着在颗粒级水平产生的磁场是可以测量的,以实时确定任何电流密度波动。

    2022年4月2日
    1.1K00
  • 石墨烯如何帮助解决能源危机

    Paragraf GHS传感器足够坚固,可以在低温水平下工作,从而实现原位测量。我们的传感器也覆盖了更广泛的特斯拉范围,因此不需要在反应堆设计的不同部分使用不同的设备类型。它们具有比标准霍尔传感器更高的分辨率,因此可以确定现场的较小变化。这是由于所使用的石墨烯传感元件的高灵敏度,以及其2D结构(避免平面霍尔效应问题)。它们还具有更好的线性度,并且不会随时间推移表现出传感器漂移或出现迟滞问题。

    2022年4月1日
    1.1K00
  • 石墨烯传感器改善电动汽车电池测试的7种方式

    Paragraf 通过开发新型 GHS-A 范围霍尔传感器实现了这些优势,这些传感器已被证明具有出色的传感分辨率,通常优于 10 ppm,与现有的霍尔效应传感器技术相比,其磁场检测范围更广。传感器也完全不受滞后的影响,因此没有过度暴露于磁场的危险。

    产业新闻 2022年3月31日
    1.0K00
客服

电话:134 0537 7819
邮箱:87760537@qq.com

返回顶部