量子点
-
电子科技大学《AFM》:Mo2N量子点修饰氮掺杂石墨烯纳米片,用于锂-硫电池
Mo2N@NG具有很强的化学吸附能力,对LiPSs有很强的电催化作用,与锂离子(Li+)有很高的化学亲和力,可以有效地催化LiPSs的快速转化,并诱导Li+的均匀沉积。研究人员通过理论计算和原位拉曼协同解释了穿梭效应的抑制和枝晶生长的减缓。
-
Environmental Science Nano: ZnO纳米颗粒和石墨烯量子点对秋水异弯藻的单一和联合纳米毒性
本文通过藻类生长抑制试验研究了nZnO和GQDs对微藻的毒性。结果表明:这两种纳米颗粒都抑制了微藻的生长,其作用呈剂量和时间依赖性。与GQDs相比,nZnO对秋水异弯藻的毒性作用更强,这可能与nZnO相对较高的表面电位和Zn2+的释放有关。两种纳米粒子均诱导产生过量氧化物并激活细胞抗氧化防御系统,导致SOD和ATP活性增强,MDA含量增加,从而抵抗细胞氧化损伤,消除过量ROS,维持正常的细胞形态和代谢。两种纳米颗粒的联合毒性并不等于每种单一纳米材料的简单总和,这主要是由于GQDs对金属离子的吸附以及两种纳米颗粒之间的团聚和沉降。发现低浓度时具有拮抗作用,高浓度时具有协同作用,纳米颗粒的综合毒性在很大程度上取决于所用浓度。
-
ACS Appl. Mater.Interfaces:用于高导电性水性油墨的银/碳量子点/石墨烯复合材料的简便合成
哈尔滨工业大学(深圳)材料学院张嘉恒课题组报道了一种新型的Ag/CQDs/G复合材料的制备方法,该方法是通过原位光还原AgNO3并在CQDs辅助的LPE得到的石墨烯纳米片上沉积Ag。Ag/CQDs/G复合材料在水中具有良好的分散性和良好的导电性,使其能够应用于柔性印刷电子产品的导电油墨。讨论了碳量子点在硝酸银光还原过程中的作用以及银/碳量子点/G复合材料的形成机理。制备了以Ag/CQDs/G复合材料为填料的导电油墨。研究了这些油墨及其印刷图案的性能。此外,还采用了压缩轧制作为导电薄膜的后处理方法,并讨论了压缩比对导电膜电阻率的影响。此外,还研究了Ag/CQDs/G导电油墨在射频识别(RFID)中应用的可行性。
-
哈工大(深圳)《ACS AMI》:简易合成高导电Ag/碳量子点/石墨烯复合材料,用于柔性印刷电子产品
研究通过首次通过AgNO3的原位光还原和银沉积到通过CQD辅助液相剥离获得的石墨烯纳米片上,首次制备了在水中具有良好分散性和稳定性的高导电Ag/碳量子点(CQDs)/石墨烯(G)复合材料。平均尺寸约为 1.88 nm 的银纳米颗粒均匀分散在石墨烯纳米片上。Ag/CQDs/G复合材料在水中表现出良好的分散性和稳定性30天。
-
《ACS AMI》:乙二胺功能化增强石墨烯量子点的碱性析氢反应!
该研究通过酰胺偶联反应合成了与乙二胺(EDA)共价官能化的石墨烯量子点(GQDs),并利用上述GQD设计并改性了一个成功的光催化水分解体系。重要的是,EDA功能化GQDs的析氢反应(HER)活性比裸GQDs高得多,EDA功能化GQD的HER活性与pH成比例地增加,并在pH = 10时达到峰值,这与裸GQD的HER催化速率随pH值变化而降低形成鲜明对比。
-
石墨烯量子点中电荷载流子动力学的进一步研究
找到影响光活性材料载流子动力学的关键因素对于改进器件开发至关重要。界面电荷分离,载流子重组,载流子弛豫以及石墨烯量子点中光激发之前激子动力学的其他机制元素仍然不清楚。
-
J. Phys. Chem. Lett.:石墨烯量子点边缘形态对其光学性质的影响
小尺寸的GQDs通常具有大的带隙,并且其带隙会随着尺寸的增大而减小。为了调整纯GQDs的光学特性,引入了杂原子掺杂、表面功能化和/或各种缺陷。根据缺陷的性质,可以对石墨烯的电子结构进行修饰。例如,锯齿形边缘上自由边的存在导致了稳定的三重基态。
-
Toxicology Letters:使用mRNA测序对四种石墨烯量子点(GQDs)进行体内毒性评估
该研究表明所有GQDs都能诱导与离子通道(K+/Ca2+)和剪接体相关的基因簇的转录变化。与其他三种GQDs相比,A-GQDs通过激活PC通路及下游凋亡信号通路对体内系统表现出更强的毒性作用。这一发现为不同GQDs引起的共同和特定的转录组反应提供了有价值的见解。
-
J. Colloid Interface Sci. :使用相容性石墨烯量子点构建内支撑以提高金属有机骨架衍生多孔碳的表面积
基于此,北京化工大学宋怀河教授与新疆大学张苏副教授联合提出了一种内部支撑策略,以使用石墨烯量子点 (GQD) 作为兼容框架来制备具有改进表面积的 MOF 衍生碳。具有丰富羧基(-COOH)和刚性结构的GQDs可以通过与[Zn4O] 6+配位,均匀引入的 GQDs 有效地避免了热解过程中的结构坍塌和孔隙收缩,使衍生的多孔碳 (GMPC-0.35) 比传统多孔碳 (GMPC-0.35) 具有更高的比表面积和中孔体积。此外,GMPC-0.35 在 1 A g -1 时具有 200 F g -1 的高比电容,在100 A g -1时具有53% 的良好电容保持率作为超级电容器的电极材料,其高于大多数报道的 MOF-5 衍生碳。
-
Carbon:在石墨烯涂层碳布上梯度加热诱导双相合成碳量子点 (CQDs) 用于高效光电催化
基于此,汉阳大学Kyung Chul Sun和Sung Hoon Jeong团队通过改变合成温度对CQDs的合成过程进行改进,得到了高度非晶态核的碳量子点(AC-CQDs)。为了确保其稳定性,AC-CQDs 直接生长在还原的氧化石墨烯上,氧化石墨烯涂覆在碳织物上以制造织物结构的电极。所提出的催化剂电极结构中的有效电荷分离显著提高了光电催化活性,在25分钟内100%降解废水染料。
-
宁波大学张京教授团队最新Nano Energy:设计p型石墨烯量子点改善锡铅钙钛矿太阳能电池中的界面电荷传输
优化后的含N,Cl GQD的Sn-Pb PSC具有最高的效率和最低的能量损失。由于器件中缺陷态的减少和PEDOT:PSS表面的改性,含N,Cl GQDs的PSC的稳定性最高,在1000小时后保持90%。为了进一步提高锡铅基钙钛矿太阳能电池的效率和稳定性,我们将在未来的工作中进行Sn2+的抗氧化研究。
-
ACS Appl. Mater. Interfaces:一种具有异质结构石墨烯量子点/β-Ga2O3太阳盲光探测器
综上所述,作者研制了一种高性能的GQDs/β-Ga2O3 PD,它具有增强光响应性、缩短光响应时间和激发更大范围的光子探测的能力。
-
亲锂石墨烯量子点涂覆PP隔膜构建强健SEI稳定锂金属
韩国庆尚大学Hyun Young Jung和仁荷大学Myung Gwan Hahm等人设计了一种新型的人造重构SEI膜。这种人造SEI膜由有机成分和富含无机成分的混合物组成并作为镶嵌界面,通过锂盐与羟基(-OH)化石墨烯量子点(GQDs)的协同效应,促进了均匀且超光滑的富氟(F)界面环境的形成,确保了锂离子的快速扩散和无枝晶特性。
-
Journal of Materials Chemistry B:N掺杂石墨烯量子点在第二近红外窗口光热消除多重耐药细菌中的应用
石墨烯量子点作为一种纳米级的石墨烯衍生物,由于其极小的尺寸、优异的光学性能和良好的生物相容性而在各个领域得到了广泛的应用。与贵金属基纳米材料相比,小尺寸的特性降低了石墨烯量子点的长期毒性,很容易从体内清除。这些特性促进了它们在生物成像、生物传感器、药物输送、光动力学治疗和PTT。最近,田等人提出了自己的观点。通过一锅水热法合成镍掺杂碳点(CDs)作为NIR-II响应性PTT试剂,而金属离子的引入可能诱发潜在的长期毒性。因此,开发不掺杂金属离子的NIR-II响应型GQD是迫切而又具有挑战性的。
-
ISO4:石墨烯量子点中多色可调的近红外三峰发射机制及检测水的比率型荧光探针应用
GQDs在检测有机溶剂、药品、食品、和化学试剂中的水含量方面具有良好的性能。与单峰发射GQDs相比,三峰发射GQDs呈现出更多的本征峰,这进一步增强了GQDs的同一性,避免了系统和环境方面的影响。此外,对 PL 机制的系统研究表明,可以通过不同的官能团对GQDs芳香域的光吸收和发射的能级分裂进行调节。其中,含氮基团在调节 GQDs 的发光特性方面非常灵活,氮可以形成多种表面态,例如吡咯N、吡啶N、氨基N 等。因此,良好的含氮形式组合是利用外部猝灭剂实现靶向荧光信号的关键。