量子点
-
南华大学张也课题组AOM:光“质”发光——木质素基石墨烯量子点应用于可见光驱动光电探测
研究者相信,此项研究将会为木质素基低维材料在光电传感领域的应用赋能,同时为并为生物质基天然高分子的分子设计和化学改性提供新的思路参考。光“质”发光,这些光合作用而来的天然高分子,将会为光电传感领域装扮上更多光彩,seeing is believing。
-
EEM |洛林大学 Jean Jacques Gaumet 教授:电化学储能器件中石墨烯量子点的研究进展
综述了石墨烯量子点(GQDs)在电池、超级电容器中作为电极材料或与活性材料混合作为辅助剂的最新研究,总结了电化学性能,最后回顾了基于GQDs后续电极材料优化策略的挑战和展望。
-
Science Advances:通过转子分子的选择性边缘功能化实现无基质石墨烯量子点的聚集诱导发射
在这里,韩国科学技术院Seokwoo Jeon通过减小尺寸并将 GQD 转化为聚集诱导发光 (AIE) 活性材料来抑制 GQD 的 ACQ 现象。
-
PRL:石墨烯/ WSe₂异质结量子点中的分子塌缩态
前期,何林教授课题组与孙庆丰教授课题组密切合作,在实验上证明构筑的石墨烯/WSe₂异质结量子点中同时存在ACSs和回音壁模式(WGMs,Klein散射引起的准束缚态)两种不同类型的准束缚态[8]。最近,两课题组再次通力合作,通过研究石墨烯/ WSe₂异质结量子点中的分子塌缩态发现ACSs的反键轨道态能转化成WGMs,揭示了ACSs和Klein隧穿效应内在深刻的关联。
-
中国石油大学(华东)范壮军教授/黄毅超教授:氮化钼量子点修饰氮掺杂石墨烯的原子界面工程策略用于高效稳定的碱性电解水析氢
本文开发了“多酸原子界面工程策略”用于制备掺杂石墨烯负载单原子Al和O共掺杂的氮化钼量子点催化剂(AlO@Mo2N-NrGO)。研究结果表明:通过电化学原位重构可以在AlO@Mo2N-NrGO电催化剂表面重构生成Al-OH水合物,这不仅极大改善了电催化剂表面的亲水性,还能有效降低水分解和氢气脱附的能垒(在400 mA·cm-2工业大电流密度下仅需285 mV的过电位)。
-
Adv. Mater.: 植入石墨烯量子点用于靶向增强肿瘤成像和局部药代动力学长期可化视
种植在纳米医学中的超高光稳定性荧光GQDs在广泛应用中有很大的潜力来缓解这些不良情况,如胚胎发育、干细胞分化轨迹、和基于成像的时空单细胞组学。当然,目前种植的GQDs纳米粒子也有很多局限性:一是绿色荧光GQDs的穿透深度有限,二是核心NPs在体内短时间内无法生物降解。
-
范壮军教授、黄毅超教授、任浩副教授,Small观点:基于石墨烯量子点配位的缺陷修复策略提升Co-N-C电催化剂的氧还原反应性能
该工作从Co掺杂的ZIF-8(Co-ZIF-8)前驱体入手,利用石墨烯量子点(GQDs)和二甲基咪唑配体(2-Melm)竞争配位,后续辅以高温热解处理,高效修复了Co-N-C电催化剂的碳缺陷,同时其电子结构和表面亲水性也得到了极大的改善。优化后的G-CoNOC电催化剂表现出了优异的电子传输性能,在极限电流的条件下运行200个小时,其电流密度还能稳定在90%以上。这得益于G-CoNOC电催化剂具有很强的抗自由基攻击能力,并且能有效还原过氧化氢副产物,从而极大提高了电催化ORR的稳定性和动力学性质。
-
宁波大学《ACS ANM》:可调谐多色石墨烯量子点,用于发光器件和防伪应用
研究通过溶剂热反应合成了蓝色(B-GQD)、绿色(G-GQDs)和红色GQDs(R-GQDs。B-、G-和R-GQD表现出与激发无关的行为、优异的荧光性质和优异的光稳定性。
-
Matter:在原子级精确水平上高效自下而上合成石墨烯量子点
郑州大学卢思宇教授团队受邀综述了GQDs的合成和最新进展。作者从传统碳点和GQDs的区别和联系入手,通过使用骨架生长方法丰富地总结了 GQDs 的合成策略并就如何使用有机策略准确合成完全符合预期假设的 GQD 结构提出了指南。
-
Nano Lett. | 气泡诱导自组装制备纳米裂纹状石墨烯量子点薄膜
研究团队提出利用简单的气泡自组装方法制备了一种具有裂纹状微/纳米结构的GQD薄膜,将其应用到高效相变热管理中,实现临界热通量和有效传热系数的协同增强,提高聚光光伏电池的性能。本研究为气泡自组装方式制备石墨烯基薄膜提供新的思路,有望在能源相关系统中具有广阔的应用前景。
-
中国科学院半导体研究所、中国科学院大学材料科学与光电技术学院–一种具有正负光电流的混合石墨烯-PbS量子点光电探测器
在635 nm激光照射下,器件在低激光功率密度(0.17 μW)下产生了9 μA的正光电流,由于具有高增益机制,器件的响应度可达39.58 A /W。然而,在高激光功率密度(9.59 μW)时,由于热散射,该器件表现出完全相反的特性。产生20 μA的负光电流,器件响应度为10.29 A/W。该装置表现出两种响应机制的共存。探索石墨烯中正负光电流的机制有助于研究石墨烯载流子的调控,也可以为石墨烯基忆阻器件提供可能的研究方向。
-
ACS Appl. Mater. Inter: 生物资源衍生的石墨烯量子点作为超灵敏环境纳米探针的等离子体纳米工程
国立台湾科技大学化学工程系江伟宏教授团队提出了一种利用微等离子体在环境条件下合成结构和功能化良好的生物资源来源GQDs,用于污染物检测。作者利用六种不同的生物资源来合成具有不同功能的GQDs,包括果糖衍生的GQDs (F-GQDs)、壳聚糖衍生的GQDs (CS-GQDs)、柠檬酸衍生的GQDs (CA-GQDs)、木质素衍生的GQDs (L-GQDs)、纤维素衍生的GQDs (C-GQDs)和淀粉衍生的GQDs (S-GQDs)。合成的生物资源GQDs具有线性范围宽、检测限低的特点,可用于高选择性水污染物检测。
-
江南大学药学院、江南大学化学与材料工程学院–可切换的双色石墨烯量子点是一种非常有前途的高灵敏度pH值检测和生物成像荧光探针
该研究报道了通过一步热解合成组氨酸、丝氨酸和五乙烯己胺功能化和硼掺杂石墨烯量子点(HSPB-GQD)。HSPB-GQD由2-5纳米的石墨烯片组成,含有羧基、羟基、氨基、亚氨基和咪唑。组氨酸、丝氨酸、五乙烯己胺和硼原子的协同作用改善了发光行为。这实现了独特的可切换双色发光。