吸波隐身
-
超轻磁-介电吸波气凝胶:金属有机框架诱导氧化石墨烯凝胶策略
本文亮点:1. 基于MOF直接诱导GO凝胶策略,合成了MOF/rGO杂化气凝胶。2. 揭示了MOF纳米晶体在凝胶过程中的晶体结构及形貌演变规律,探究了MOF/rGO湿凝胶的形成机理。3. MOF/rGO气凝胶衍生的超轻磁-介电气凝胶在超低填含量下展现出宽频带、强吸收的吸波性能。
-
四川大学《Carbon》:简易制备大尺寸还原氧化石墨烯,用于高效微波吸收器
综上所述,在这项工作中,使用大片GO通过简单的热还原方法制造了一种轻质、低负载、高效的MA材料。同时,热还原法为未来大规模生产GO吸波材料提供了可能。
-
西北工业大学孔杰教授团队最新研究成果在《自然·通讯》发表
研究团队将吸湿性LiCl引入到打孔石墨烯气凝胶纤维中,得到具有吸湿性的石墨烯气凝胶智能纤维(LiCl@HGAFs),实现了可空气集水、吸附制冷/制热与电磁波吸收功能的集成。
-
刘磊团队今日Chem. Eng. J.:MXene/纤维素微纤维复合石墨烯,微波吸收!
通过引入新型纳米材料以开发各种电磁波吸收器,是解决电磁污染问题的一个极具前景的策略。近年来,由于独特的碳化物核结构,以及丰富的表面官能团赋予其令人满意的亲水性和可调控的电学性能,MXene已成为各个领域中一颗不可忽视的闪亮之星。尽管Ti3C2Tx MXene被公认为是高效的微波吸收候选材料,但其在保持阻抗匹配和提高介电损耗之间仍然存在着矛盾。
-
西北工业大学等《Nat Commun》:吸湿性多孔石墨烯气凝胶纤维可实现高效的水分捕获、热量分配和微波吸收
本文介绍的多孔石墨烯气凝胶纤维与吸湿性氯化锂盐相结合,可能为开发用于水收集、热能利用和微波吸附的多功能材料提供重要的替代品,也为气凝胶纤维相关技术在各种应用中开辟了未经探索的机会。可以预见,本研究结果还将推动未来开发先进的吸附剂、除湿器、基于吸附的传热系统、吸附驱动制冷等。
-
江南大学《ACS AMI》:耐腐蚀石墨烯基磁性复合泡沫,用于高效电磁吸收
以水热方式制备氧化石墨烯泡沫基体,酞菁铁(FePc)杂合子在溶剂热条件下自组装在石墨烯泡沫骨架上;经过高温退火处理,酞菁铁杂合子发生自身裂解,形成磁性Fe粒子的同时并在其外部形成碳壳保护层。
-
西南交大孟凡彬团队 CEJ :通过谐振腔共振损耗和次序衰减策略实现核壳异质石墨烯基气凝胶微球宽频高效微波吸收
在前期研究基础上,孟凡彬团队进一步提出利用同轴静电纺丝结合冷冻干燥和热还原技术制备了具有核壳异质结构的石墨烯基气凝胶微球(图1)。制备得到的气凝胶微球具有独特的微观多孔结构,外壳层表现出三维有序多孔网络结构,内核层呈现含有小孔结构的无序多孔碳形貌(图2)。不同壳层微观结构之间形成了清晰的异质界面,增加了材料的强界面极化效应。
-
东北大学/杭州电子科技大学张雪峰团队Small封面:核@壳型高熵合金@石墨纳米胶囊微波吸收材料
东北大学/杭州电子科技大学张雪峰教授团队采用自主设计的直流电弧等离子体放电设备,首次合成了具有核@壳包覆结构的高熵合金@石墨纳米胶囊材料(HEA@C),通过高熵合金的高熵效应实现了界面匹配与极化性能的调控。
-
河工大《Carbon》:一种新型超轻复合材料的可控制备及吸波性能!
石墨烯材料的微波吸收性能因其较高的介电常数和超低的磁损耗能力而受到严重阻碍,我们报告了氟化氮化硼纳米片支撑的石墨烯量子点复合材料,氟化氮化硼纳米片的低介电常数和铁磁性不仅减少了微波反射还增强了磁损耗,并帮助GQDs克服了亲水性。通过调节石墨烯量子点的尺寸发现GQDs/F-BNNs的吸收带宽和反射损耗(RLmin)与GQDs的尺寸密切相关。
-
燕大李雪爱/王海燕和西工大吴宏景《Adv. Opt. Mater.》: 结构工程构筑三维连通石墨烯纳米笼用于高效微波吸收
与碳纳米笼相比,文中所制备的3DIGCs的优势体现在以下三个方面:一、仅数个纳米厚度的石墨烯外壳以及连通空心结构有利于压制趋肤效应、改善阻抗匹配;二、高导电率的连续石墨烯笼框架促进了电子在绝缘介质中的传输与跃迁,电阻损耗大幅增强;三、由3DIGCs独特的高曲率、类分级多孔结构自发引入的缺陷及异质界面在高频下产生了极化弛豫损耗。因此,此材料实现了阻抗匹配特性与强电损耗特性之间的集合,展现出了全面优异的吸波性能,为利用结构工程开发新型石墨烯基吸波材料提供了一个思路。
-
河北工业大学《Carbon》:悬铃木树皮为原料制备Co掺杂多孔碳复合材料,用于微波吸收
研究以悬铃木树皮为碳源,六水合硝酸钴(Co(NO3 ) 2·6H2O)为钴源,制备了树皮衍生的Co掺杂多孔碳复合材料(Co@PC)。Co2+的影响研究了浓度和树皮碳化温度对 MA 性能的影响。由于优异的阻抗匹配和多损耗机制,Co@PC 复合材料获得了卓越的 MA 性能。RL最小值在 8.6 GHz 时可为 −58.4 dB。结果表明Co@PC可以用于微波吸收材料(MAMs)领域。
-
河北工大《Carbon》:新型轻质复合材料的可控合成及吸波性能!
虽然石墨烯复合吸波材料的研究给我们带来了一定的成功,但是依然存在一些问题。石墨烯是一种零带隙的半导体,并且本身不具有优异的微波吸收能力。同时石墨烯的介电常数大,当电磁波接触其表面时,很容易引起强反射。这种强反射势必会影响复合材料的吸波性能,于是我们创新性的使用石墨烯量子点(GQDs)来代替石墨烯。与此同时,氮化硼纳米片(BNNs)对电磁波的反射能力较弱,同时具有熔点高、导热系数高、化学性质稳定、耐腐蚀等优良特性,且在电磁波吸收领域已有一些研究。将GQDs与超薄BNNs相结合,得到了轻质GQDs/BNNs复合材料,其阻抗匹配率和稳定性均得到增强。
-
复合气凝胶:电磁波捕捉能手
经过水热法和冷冻干燥处理,研究团队制备出超轻氮掺杂还原氧化石墨烯/多壁碳纳米管(NRGO/MWCNTs)复合气凝胶。该气凝胶具有超低的本体密度,且内部存在层次孔道结构,优化了阻抗匹配,使得电磁波容易进入材料内部,在内部孔隙组成的网络结构中进行能量衰减。
-
四川大学《COMPOS SCI TECHNOL》:柔性耐热碳纳米管/石墨烯/聚酰亚胺泡沫,用于宽带微波吸收
本文制备具有柔性和宽频MA性能的耐热PI泡沫,以满足航空航天的实际需要。由于具有独特的层状孔隙结构和以一维碳纳米管和二维石墨烯为吸波材料的多层结构单元,制备的聚酰亚胺泡沫塑料的RLmin为-32.5db,EB超宽为8.5ghz。同时,所制备的聚酰亚胺泡沫塑料具有轻质、耐热、柔韧性好等特点,在实际应用中具有广阔的应用前景。
-
复旦大学Renchao Che团队–有序介孔碳包覆石墨烯用作高性能宽带微波吸收剂
有序的介孔碳复合材料具有明确的球形介孔,且均匀分布在石墨烯表面,直径约20 nm(石墨烯@中碳,缩写为G/MC)。这纳米复合材料具有高的BET表面积,高达316 m2 g-1。令人印象深刻的是,在900°C碳化后的G/MC纳米片(G/MC-900)具有出色的微波吸收能力,在仅5 wt%的超低填充量下,最大反射损耗(RL)为-66.1 dB,吸收带宽(EAB)为8.2 GHz(RL <-10 dB)。