激光诱导
-
富邦股份:公司投资参股的以色列 LIGC公司,拥有激光诱导石墨烯平台技术,该公司正持续推进石墨烯技术相关产品落地
有投资者向富邦股份(300387)提问, 董秘你好!贵公司与以色列公司研发石墨烯技术,现在进展如何?有没有产品推出,收效如何?
-
北航罗斯达Adv. Sci.:多功能、多自由形态激光诱导石墨烯选区增材制造技术
本研究创新地提出一种基于数字化激光加工的石墨烯增材制造技术(LIG-AM),实现了多自由形态宏观石墨烯的定制化制备,提供了智能材料与高强度材料选区结合的同步增材制造新思路,可为未来智能高端装备的选区功能化同步制造带来指导意义。
-
韩科院《AFM》封面:一篇综述带你了解激光诱导石墨烯的最新进展!
首先介绍了LIG形成的机理,重点介绍了激光辐照过程中激光与材料的相互作用和材料的转变。深入讨论了激光类型、制造参数和激光环境对LIG结构和性能的影响。还强调了LIG在先进应用中的潜力,包括生物传感器、物理传感器、超级电容器、电池、三电纳米发电机等等。最后,讨论了LIG研究的当前挑战和未来展望。
-
富邦股份:公司投资的LIGC公司具备有关激光诱导石墨烯平台技术
有投资者向富邦股份(300387)提问, 公司领导您们好,我想咨询一下公司有激光,机器人方面技术吗?
-
综述:激光诱导石墨烯在智能传感方向的应用
文章首先简要介绍了LIG和LIG复合物的制备原理,包括形貌和组分的调控,物理和化学特性的控制等。接着基于设计原理和工作机制(特异结合型和非特异结合型的化学传感器,基于压阻效应的机械传感器等),对LIG传感器进行总结。最后,作者讨论了LIG的影响及其未来发展。
-
激光诱导石墨烯(LIG)医用传感器研究文献分析
文献分析结果 http://www.pubmedplus.cn/P/SearchQuickResult?wd=b4ef1de7-7310-439a-a585-b9d40bac64fa 年份 记录数占% 01. 2022 4 篇 22.222% 02. 2021…
-
用于可穿戴电子产品的柔软、可拉伸激光诱导石墨烯传感器
通过结构和材料设计获得的可伸缩器件和基板对于可穿戴电子产品至关重要。在PI薄膜上制造的基于LIG的传感器的最大应变小于3%,与人类皮肤的最大应变超过13%相比,这要低得多。因此,必须制造可拉伸性超过15%的基于LIG的电子产品,用于可穿戴应用。
-
单层石墨烯的可逆图案化,采用简单的化学方法
本研究提出了一种单层石墨烯化学可逆图案化的简单方法。石墨烯可以通过使用短波长视觉CW激光烧蚀有效快速地氧化。这是通过将传导电子从石墨烯传递到溶解在水中的氧化剂来实现的。还证明,通过加热同时影响相同点火激光器的强度,该光氧化区域可以选择性地恢复为纯石墨烯。
-
研究人员通过太阳能加热增强石墨烯超级电容器的储能能力
在这项研究中,研究人员通过激光诱导技术制备了具有三维多孔结构的石墨烯薄膜。他们通过脉冲电沉积将聚吡咯均匀地复合到石墨烯网络中。得到了石墨烯/聚吡咯复合电极,并由此构建了一种新型的太阳热增强型超级电容器。
-
Nano Letters:激光诱导石墨烯和金纳米颗粒复合材料作为瞬态、可植入的超薄生物燃料电池
具有良好生物相容性和生物可再利用性的瞬态电源引起了人们的广泛关注。复旦大学宋恩名、香港城市大学叶汝全和于欣格等人报道了一种基于激光诱导石墨烯(LIG)/金纳米颗粒(Au NPs)复合电极的高性能、瞬时葡萄糖酶生物燃料电池(TEBFC)。
-
清华团队将石墨烯带进元宇宙:集成眼动交互和触觉感知的协同界面,拉伸应变可达1000%,界面厚度仅90μm
相比传统的金属电极,结合柔性聚氨酯的蜂窝状石墨烯电极材料,具有超高的柔性和可拉伸性,拉伸应变范围可高达 1000%,并且此次采用的是基于医疗级的超薄柔性聚氨酯薄膜,本身具有高度透气性、贴附性和生物兼容性,这让电极材料与皮肤实现了完全的共形贴合,具有抗运动的长效贴附稳定性,再加上微米级孔径的蜂窝状石墨烯,电极具有优异的透气性和舒适性。
-
北京理工大学郭晓岗副教授团队:激光诱导石墨烯柔性电子器件 | MDPI Biosensors
激光诱导石墨烯 (Laser-Induced Graphene, LIG) 技术在2014年由J. Tour课题组首次提出,无需掩膜和特殊气氛条件,可在PI薄膜上高效制备定制化可导电石墨烯二维图案。在柔性可穿戴电子器件和生物传感器领域具有显著潜力。北京理工大学郭晓岗副教授团队通过对LIG制备和应用的介绍,综述了基于LIG技术的柔性电子器件最新进展,并将研究成果发表于Biosensors 期刊。
-
北航罗斯达AS:基于激光诱导与树脂浸渍复合工艺制备的多功能宏观三维石墨烯结构
最近,北京航空航天大学罗斯达教授创新性地提出了利用激光诱导和树脂浸渍复合工艺构筑宏观3D石墨烯结构的新方法,并深入探索了其加工-性能调控规律。研究首先通过独特的加工工艺,构建了大尺寸和多种形状结构的3D LIGP/环氧树脂层压复合材料 (LIGP-C)。随后,通过开展系统的加工-结构-性能关系研究,实现了同时具备高强度、高导电率和高传感性能的3D LIGP-C。凭借着基于激光诱导与树脂浸渍结合的加工优势、石墨烯集成赋予的多功能性以及出色的结构耐久性,3D LIGP-C可以实现对纤维增强复合材料的变形或失效进行有效的原位监测。
-
重庆大学李剑、黄正勇课题组《Nano Energy》:面向自供电测控系统的激光诱导石墨烯压力传感器和摩擦纳米发电机
研究通过简单、低成本的工艺制备了一种激光诱导石墨烯(LIG)电极的还原氧化石墨烯(rGO)布基压力传感器。其中LIG的多孔微结构可以提高布基压力传感器的灵敏度。该压力传感器的性能高、成本低,并具有环保性,可以检测微弱的动态身体信号和微小的静力差异。此外,结合该团队先前研究成果,构建了由布基压力传感器和LIG电极摩擦纳米发电机(TENG)组成的自供电测控系统。由此说明rGO布基传感器在自供电可穿戴设备、智能皮肤和人机交互方面具有一定的应用潜力。
-
重大/清华/北科大《Carbon》:Nomex纸基双面激光诱导石墨烯,用于多功能人机界面
通过简单地组装三层双面激光定制的Nomex纸来实现接收指令(压力感应能力)和提供反馈(发声能力)的功能集成。该集成器件不仅对类似于轻柔手指按压(约10kPa)的压力具有灵敏的响应(约50ms响应时间),而且可以发出具有更大声音的高质量声音信号压力水平(约70分贝在1W/cm2功率密度)。此外,还展示了两个概念验证演示,即按音频垫和响应命令的耳机,以证实信息交换活动的可行性。