外延缓冲
-
Nature Electronics: 石墨烯晶圆的无损转移与器件集成
研究团队利用Cu(111)/石墨烯作为外延模板,基于晶格匹配实现了高质量单晶Sb₂O₃栅介质层的外延生长,并利用石墨烯作为缓冲层,通过较弱的范德华作用力,实现外延层与外延衬底的解耦,确保Sb₂O₃层无损剥离。另一方面,外延制备的Sb₂O₃能够与石墨烯形成良好的范德华接触,进而作为转移辅助介质,辅助石墨烯剥离转移。基于此,研究团队实现了4英寸石墨烯晶圆向目标衬底(Si/SiO₂衬底)的无损转移。
-
台湾成功大学Adv. Mater.: 石墨烯上外延生长的铁电六方氮化硼!!
本文通过层状外延生长方法成功实现了在石墨烯上的铁电h-BN薄膜。这种生长方法不仅克服了2D铁电材料的可扩展性、稳定性和局部可切换性等挑战,还为未来具有非易失性和可重构功能的2D设备提供了一个有前景的平台。研究结果表明,h-BN薄膜在石墨烯上的外延生长不仅实现了铁电性,还展示了在实际铁电器件中的应用潜力。
-
研究人员开发出超高分辨率微型 LED 显示器
他们的研究描述了一种远程外延生长技术,该技术利用石墨烯中间层在4平方厘米的面积上生成连续结晶的过氧化物薄膜。这种方法有效地消除了晶界,实现了纯面外晶体取向。
-
宁波石墨烯创新中心有限公司石墨烯基氮化镓外延项目洁净室及洁净室安装项目结果公告
标段(包)[001]石墨烯基氮化镓外延项目洁净室及洁净室安装:中标人:信息产业电子第十一设计研究院科技工程股份有限公司,中标价格:895.1338万元
-
我国科学家开发出面向新型芯片的绝缘材料
具体来看,团队首先以锗基石墨烯晶圆作为预沉积衬底生长单晶金属铝,利用石墨烯与单晶金属铝之间较弱的范德华作用力,实现4英寸单晶金属铝晶圆无损剥离,剥离后单晶金属铝表面呈现无缺陷的原子级平整。随后,在极低的氧气氛围下,氧原子逐层嵌入单晶金属铝表面的晶格中,最终得到稳定、化学计量比准确、原子级厚度均匀的氧化铝薄膜晶圆。
-
河套深港科创合作有大机遇!国创中心“Inno Link 创享孵化器”亮相
深圳华盈芯材半导体技术有限公司已发展出成熟的高质量石墨烯生长、转印到硅晶圆的量产技术,并与台湾外延片公司合作初步验证了在石墨烯晶圆上外延氮化镓的成本以及特性上的优势。
-
EES:石墨烯阵列诱导锌金属负极沉积
作者通过剪切流诱导法得到米级的Cu@G复合集流体,并实现Zn(002)晶面在集流体上的优先沉积。多种实验表征和模拟证明,揭示了Cu@G诱导Zn(002)晶面的优先沉积的原理。匹配Cu@G的不同器件(锌离子混合电容器、锌离子电池和Zn-MnO2电池)均表现出优异的循环性能。本工作对提高负极中Zn利用率和无锌负极储能器件设计具有重要的指导作用。
-
首尔国立大学Gyu-Chul Yi等–GaN在石墨烯-蓝宝石上的脉冲模式金属有机气相外延生长
在石墨烯涂层蓝宝石衬底上生长的高质量GaN膜可以通过使用热释放带轻易地剥离并转移到外来衬底上。此外,揭示了在GaN生长过程中氨流的脉冲操作是制备高质量独立GaN膜的关键因素。
-
石墨烯能否增强氮化物半导体技术?
来自士兰微电子、北京石墨烯研究院和苏州大学的研究人员共同努力,对石墨烯作为氮化物外延生长缓冲层的开发和可能用途进行了全面的综述。
-
研究人员成功在柔性石墨烯基板上生长 GaN microLED 阵列
研究人员使用金属有机气相外延在覆盖有微图案 SiO2 掩模的石墨烯层(生长在蓝宝石基板上)上生长 GaN 微盘。然后将微盘加工成 micro-LED,并成功转移到可弯曲基板上。
-
Nano Letters:远程外延的 GaN 衬底上石墨烯优异的热化学稳定性
尽管GaN具有优异的物理特性,使其成为高性能电子和发光器件应用的引人注目的选择,但GaN衬底上石墨烯在高温下热化学分解的挑战阻碍了通过MOCVD实现远程同质外延。
-
Nano Res.[器件]│台国安教授课题组:硼烯-石墨烯异质结的制备及其高效宽带光电探测器
南京航空航天大学台国安教授课题组用化学气相沉积的方法成功原位制备出硼烯-石墨烯异质结,首次构筑了硼烯-石墨烯异质结(B/Gr)基宽波段光电探测器,展示出其在光电探测器件上的应用潜力。
-
Analytical Chemistry:超薄石墨炔/石墨烯二维材料构建电化学检测平台
在此结构中,石墨炔起到吸附层的作用,通过d -π和π -π相互作用对目标物表现出很强的亲和力,同时石墨烯起到导电层的作用,解决了石墨炔导电性差的问题,实现了Cd2+, Pb2+, nitrobenzene和4-nitrophenol的检测。
-
光州科学技术研究所Dong-Seon Lee–石墨烯的稳定性及AlN表面凹坑对GaN远程异质外延剥离的影响
我们首先展示了石墨烯在生长GaN之前的热稳定性,在此基础上开发了GaN在石墨烯/AlN上的两步生长。GaN样品在750℃的第一步生长后成功剥离,而在1050℃的第二步生长后剥离失败。深入分析证实,AlN模板中的凹坑导致该区域附近石墨烯的降解,从而导致生长模式的改变和剥离失败。
-
Nano Res.[制造]│高鸿钧课题组:构筑石墨烯硅烯转角异质结
我们团队利用分子束外延的生长方式,在可控热处理制备的Ru(0001)孪晶表面上,制备了石墨烯单晶结构,并通过硅插层技术,在Ru/石墨烯层间面制备出单层硅烯,得到不同转角的石墨烯/硅烯异质结(TGS)。我们通过扫描隧道显微镜和计算证实了异质结的存在,并对其结构进行了研究。