科研进展
-
华中科技大学《ACS AMI》:通过自组装单层加强石墨烯器件的热管理
研究应用自组装单层(SAM)来改变石墨烯和氧化物基底之间的界面,并缓解器件中的热问题。以 -NH2终止的SAM增强了石墨烯与基底之间的界面耦合强度,从而提高了界面热导率。以 -CH3结束的 SAM 能有效抑制基底声子散射,保持石墨烯的高面内热导率。特别是,-NH2端接的 SAM 显著提高了石墨烯场效应晶体管的散热效率,缓解了自热问题。器件的载流能力和最大功率密度分别提高了 28.1% 和 48.2%。我们的研究为在二维电子器件中加入SAM以改善热管理提供了一个极具吸引力的平台。
-
中科院山西煤化所《CEJ》:CNF-Ag/石墨烯杂化薄膜,用于可穿戴电磁防护材料
研究采用简便的浸涂方法,成功制备了具有多层结构的可穿戴抗菌纤维素纳米纤维/银纳米线/氧化石墨烯(CNF-Ag NWs/GO)混合薄膜。这种多层结构由柔性 CNF 基材、银纳米线电磁屏蔽块和 GO 封装单元构成。利用氢键相互作用对 GO 片材的封装,编织出致密的 Ag NWs 导电网络。由此制成的薄膜具有极低的片电阻(0.9 Ω/sq),在毫米波范围(26-40 GHz)内具有 80 dB 的优异电磁屏蔽性能。同时,它还具有优异的抗菌性能和高灵敏度的运动监测能力。该研究成果实现了多功能集成,为可穿戴电磁防护材料的开发提供了新的思路。
-
扭曲的光线给电子带来旋转的动力
在一篇新论文中,寻求控制光与物质之间量子相互作用的更好方法的科学家们展示了一种利用光给电子以旋转动力的新方法。
-
兰州大学陈熙萌/李湛|Small|面向高效卤水提锂的银-石墨烯复合膜:突破机械性能与选择性瓶颈
研究团队通过化学还原法将银纳米片嵌入GO层间,形成了具有金属限制的二维纳米通道结构。银纳米片的嵌入不仅增强了膜的机械强度,还优化了水分子在GO膜中的流动路径。通过银纳米片的引入,膜的表面特性得到了改善,形成了更加疏水的环境,有效促进了水分子在膜层之间的流动,增强了水通量。同时,银的引入还能够通过局部的电场效应,调控离子在膜中的选择性传输。
-
Nature Chemistry | 北大:石墨烯-分子-石墨烯单分子接头有望助力新型纳米器件!
该团队设计并制备了一种新型的石墨烯-分子-石墨烯单分子接头(SMJ),实现了对分子导电特性的精确调控。利用高分辨率的非弹性电子隧穿谱技术,研究人员成功测量了不同化学物种在接头中的导电状态,并揭示了化学反应过程中的实时电流变化。
-
长春理工大学陶海岩教授:基于飞秒激光构建的三维氧化石墨烯纳米涂层增强沸腾传热
该研究运用飞秒激光直写技术与纳米流体沸腾法相结合,成功制备出具有微结构形貌的氧化石墨烯纳米涂层,突破了传统二维涂层的维度限制,为石墨烯基材料提供了全新的可控传热增强因子。团队通过精心设计的实验测试,深入探究了具有微结构形貌的氧化石墨烯纳米涂层对传热性能的影响并在此基础上提出了自适应导热-区域液体供应机制,为突破石墨烯基纳米涂层的传热极限提供了重要依据以及全新优化策略。
-
激光诱导石墨烯-银纳米粒子复合材料:具有抗真菌特性的可持续超级电容器
滴涂电极(E1)的片状电阻为 37.10 Ω,电导率为 12.2 S cm-1,而丝网印刷电极(E2)的片状电阻为 28.25 Ω,电导率为 16.04 S cm-1,表现出更好的性能。相比之下,市售的银墨丝网印刷电极(E3)的片电阻为 3.00 Ω,电导率高达 151.09 S cm-1。这些结果表明,AgNP 的应用方法会显著影响复合材料的电学特性。
-
韩国科技院《ACS Nano》:低成本、环保、高性能的3D激光诱导石墨烯蒸发器,用于连续太阳能海水淡化
所得激光诱导石墨烯 (LIG) 表现出 99.0% 的最高光吸收效率和较宽的吸收范围 (250–2500 nm)。作为一种优良的太阳能吸收剂,棉织物上的 LIG 可以有效吸收 98.6% 的总太阳辐照度,其表面温度在阳光下可以达到 84.5 °C,无需光集中。此外,我们还提出了一种经济高效的 3D LIG 蒸发器 (LIGE),用于连续太阳能海水淡化。这种创新设计有效地缓解了盐的形成问题,并提高了蒸汽的产生效率。
-
石墨烯做“筛子”,海水淡化更高效
该项目由华东理工大学物理学院教授方海平团队研发,目前其科研成果——便携式海水淡化器已成功落地。这款海水淡化器外形和尺寸类似保温杯,重量不到1公斤,可为使用者提供超过1周的淡水。这款形似保温杯的海水淡化器原理并不复杂。它的内部采用了特殊的氧化石墨烯膜,从而在有效阻挡并过滤盐离子的同时,允许水分子通过。
-
辽宁工业大学生态环境保护与修复团队JECE:具有抗堆叠特性的L-谷氨酸功能化氧化石墨烯高效吸附-还原去除水中Cr(VI)
研究人员将L-谷氨酸负载到氧化石墨烯(GO)中,以获得抗堆叠的L-Glu/GO复合材料。经过L-Glu修饰后,GO表面变得极其粗糙。丰富的褶皱和通道同时出现。此外Cr(VI)的吸附过程符合伪二级动力学模型和Langmuir等温线模型,Cr(VI)的qm为71.12 mg·g–1,几乎是GO(2.64 mg·g–1)在pH=2时的27倍。孔填充、阴离子-π相互作用、电荷相互作用、吸附-还原和配位相互作用共同促进了Cr(VI)的吸附。
-
219【Chem Eng J】量身定制的氧化石墨烯纳米片用于高CO2吸附的多孔框架
通过两步定制GO纳米片微观结构的方法,使形成的OPGO同时具有平面内孔隙和含氧官能团,通过连续的刻蚀和氧化过程。创造的孔隙增强了OPGO-Ca吸附剂的比表面积,为CO2吸附提供了额外的物理吸附位点。同时,生成的含氧官能团为CO2提供了相互作用位点,进一步增强了吸附。
-
南京理工大学《ACS AMI》:等离子体驱动将2D石墨烯转化为3D软包以提高电磁吸收性能
研究提出成功地采用了一步法还原氧化石墨烯,并通过等离子体处理将二维石墨烯转化为三维口袋状结构。这种独特的三维结构是由等离子体处理在表面形成的不均匀缺陷诱发的。还原氧化石墨烯独特的袋状结构具有显著的电磁波吸收特性。
-
[团队成果] 氢刻蚀与铜催化辅助实现无定型类石墨烯碳向单层石墨烯的转化
我们进一步展示了一种全局“自上而下的蚀刻”方法,可以蚀刻掉上层石墨烯层,从而在铜表面获得均匀的SLG膜。在AGLC形成和随后转化为石墨烯的过程中,氢既充当蚀刻剂又充当助催化剂。在高碳浓度下,氢主要作为蚀刻剂,在低碳浓度下,氢起辅助催化作用。因此,我们的研究结果为通过SPCS转化石墨烯提供了一个新颖而详细的理解,这将有助于进一步推进SPCS衍生的石墨烯技术的大规模工业生产。
-
北京林业大学李建章Composites Part B超韧珍珠母启发的大豆蛋白/石墨烯纳米复合材料:具有阻燃性、热导性和可回收性
在这项研究中,研究人员成功开发了一种通过球磨喷雾法制备的类似珍珠母的高性能和多功能纳米复合膜,该膜由石墨烯/SPI材料制成。研究人员利用动态非共价相互作用来增强无机纳米填料的增韧效果,同时利用动态共价超分子相互作用来实现增塑剂增强材料。通过共价和非共价相互作用的协同作用,增强了界面相互作用,从而提高了材料的机械性能。