科研进展
-
《Scientific Reports》使用氧化石墨烯涂层粉末减少激光粉末床熔融MnAl(C) 的裂纹
研究人员采用湿化学工艺在 MnAl(C)粉末上涂覆了 0.2 wt.% 的 GO。GO 的加入减少了打印部件中裂纹的形成,同时也影响了沿生长方向的001织构程度。打印后,参照材料和 0.2 wt.% GO 的密度分别达到 93% 和 87%。
-
透明植入物可读取大脑深层神经活动
新开发的神经植入物克服了目前技术的局限性。它由一条薄而透明的柔性聚合物条组成,并贴合于大脑表面。其中嵌入了由微小的圆形石墨烯电极组成的高密度阵列。每个电极的直径为20微米,由一根微米细的石墨烯导线连接到电路板上。
-
浙大高超团队《Nat. Commun.》: 超高导热超高模量石墨烯纤维
浙江大学高分子系高超教授团队最新工作,提出“复合流场湿法纺丝”方法,纺丝的同时,引入径向的旋转流场,使原本径向无序分布的氧化石墨烯基元有序化排列,形成了同心圆的液晶织构,经过干燥和高温石墨化后处理,大幅增大纤维中晶区的三维尺寸,同时实现了纤维的超高导热和超高模量性能,导热率达1660 W/mK,杨氏模量达901GPa。
-
新型石墨烯涂层将废热转化为电能
该小组开发了一种可印刷的石墨烯基涂层,以利用热电捕获,从而将废热回收为电能。将涂层印刷成贴片或垫片,然后将其施加到加热表面。在周围环境较冷的地方,电子远离热源并进入寒冷的环境,产生通过纳米片传导的电活动。该热电传输系统可以连接到外部电源组,为电池充电,或者可以直接为另一个设备供电。
-
科学家揭示石墨烯/垂直排列碳纳米管/六方氮化硼夹层异质结构界面上的声子热输运过程
该研究团队采用分子动力学模拟,计算了石墨烯/碳纳米管/六方氮化硼(Gr/CNTs/hBN)夹层异质结构的界面热阻,其中垂直排列的碳纳米管(VACNT)阵列与石墨烯和六方氮化硼层共价结合。研究发现,Gr/VACNT/hBN夹层异质结构的界面热阻(ITR)比相同平面尺寸的Gr/hBN范德华异质结构的界面热阻(ITR)小一到两个数量级。研究人员观察到共价键有效地增强了Gr和hBN层间的声子耦合,导致Gr和hBN之间态声子密度的重叠因子增加,从而降低了Gr和hBN的ITR。
-
无金属石墨烯量子点有望实现高效肿瘤治疗
所获得的源自红细胞膜的 GQD 已被证明具有令人印象深刻的过氧化物酶模拟活性。因此,GQD 在体外非常有效地诱导癌细胞凋亡和铁死亡。它们还选择性地靶向肿瘤,静脉注射的抑瘤率高达77.71% ,瘤内注射的抑瘤率高达93.22%,且无脱靶副作用。
-
科学家研发近场红外技术,对石墨烯封装器件堆垛方式实现成像,达成石墨烯制备的实时监控
该团队通过调节入射红外光的波长,借此找到一个十分合适的波段,并让这一波段刚好处于六方氮化硼垂直方向的声子模式波段。在该波段之下,六方氮化硼就像波导一样,能将石墨烯的光学信号传导到六方氮化硼的上表面。这时在六方氮化硼的上表面,针尖就能够扫描到石墨烯的红外信号。
-
首尔国立大学Gyu-Chul Yi等–GaN在石墨烯-蓝宝石上的脉冲模式金属有机气相外延生长
在石墨烯涂层蓝宝石衬底上生长的高质量GaN膜可以通过使用热释放带轻易地剥离并转移到外来衬底上。此外,揭示了在GaN生长过程中氨流的脉冲操作是制备高质量独立GaN膜的关键因素。
-
数理部教师蒋建军在权威期刊《Separation and Purification Technology》发表学术论文
与阳离子类似,阴离子同样可以调控氧化石墨烯膜的层间距。其原因在于阴离子和阳离子可以形成一种称之为离子桥的复合物,离子桥可以将相邻的氧化石墨烯膜连接起来,进而有效地调控氧化石墨烯膜的层间距,抑制溶胀现象的发生,显著改善氧化石墨烯膜的海水淡化性能。
-
Chem. Eur. J. :Se, N共掺杂石墨碳与CoFe合金耦合作为锌空气电池的高效双功能催化剂
重庆大学王煜课题组采用简单的水热热解工艺制备了新型的分散在Se, N共掺杂石墨碳(CoFe/Se@CN)上Co3Fe7合金纳米颗粒。合金与石墨碳之间的强锚定效应增加了催化剂的稳定性,使纳米颗粒分散良好。丰富的结构缺陷大大提高了ORR和OER活性。CoFe/Se@CN的比表面积和丰富的介孔也大大提高了CoFe纳米颗粒的负载以及质量和电子的传递效率。此外,用CoFe/Se@CN组装的可充电ZABs性能远优于贵金属组装的ZABs。
-
转角双层石墨烯:霍夫施塔特蝴蝶的重复性高阶拓扑
来自韩国科学技术院物理系的Sun-Woo Kim等,证明了以局部角态为特征的高阶拓扑绝缘体(HOTI)相,作为原始HOTI的复制体而出现,从而实现霍夫施塔特能谱的自相似性。他们证明了在所有相称的角度下,TBG中均存在精确的通量平移对称性。
-
纳米“芯”材 助推“关键电子材料”巨浪——记济南大学前沿交叉科学研究院研究员 逄金波
二维材料具有构建高集成度、高效光电器件的特性,在未来集成光电子器件中有重要前景。按照电学导电性,可分为导体、绝缘体和半导体等。其种类丰富,半导体具有高迁移率,电子光电器件具有高开关比,可通过异质结任意搭配来进行器件性能改善。其中,基于石墨烯、二硒化钨、贵金属硫族化合物的电子光电器件性能优异,成为逄金波教授课题组研究的首选课题。
-
Cement Concrete Compos. :三维多孔石墨烯水泥基复合材料力学性能多尺度实验研究
纳米材料提高水泥基复合材料性能途径主要有两种:一种是通过物理填充基体孔隙和发挥化学活性作用改善水泥基材料性能(如纳米SiO2、纳米CaCO3等);另一种是通过提供成核位点促进水泥水化(如AlO3等)。
-
【CO2捕获】Energy:非表面活性剂氧化石墨烯通过在气-液-固界面形成水合物来捕获燃烧后二氧化碳—Fang Wang
首先,基于分子动力学(MD)模拟,在气液界面处,氧化石墨烯的诱导增加了气体传递量,缩短了氧化石墨烯提供的非均相成核位点上水合物成核的诱导时间,吸引了聚集在氧化石墨烯层上的CO2分子参与水合物成核。本研究可为通过气体水合物法捕获CO2的新型纳米材料加速器的开发提供见解。
-
研究人员将煤炭转化为下一代电子设备使用的高纯度材料
研究小组在基于半金属石墨烯或半导体二硫化钼的二维晶体管中使用煤炭衍生的碳层作为栅极电介质,使设备的运行速度提高了两倍多,同时能耗更低。与其他原子级薄材料一样,煤炭衍生的碳层不存在”悬空键”或与化学键无关的电子。传统的三维绝缘体表面存在大量的这些位点,它们通过有效地发挥”陷阱”的作用而改变了绝缘体的电气特性,减缓了移动电荷的传输速度,从而降低了晶体管的开关速度。