科研进展
-
Nanoscale:二维材料石墨烯用印刷式传感器的最新进展!
印度理工学院卡拉格普尔分校Titash Mondal教授等人研究采用了一种基于模板印刷的方法,使用液态聚异戊二烯橡胶、过氧化二异丙苯和石墨烯等成分。这种方法不仅使制备过程更加简化和经济,还降低了碳足迹。最终,研究解决了新型传感器可能面临的问题,特别是在无干扰的呼吸监测方面。通过开发基于弯曲应变的传感器,研究团队成功地消除了信号串扰,提高了传感器的精确性。
-
Nano Res.[催化]│电子科技大学张永起教授课题组:镍铁合金颗粒/氮掺杂垂直石墨烯阵列作为一种高效电催化剂用于碱性水氧化
首先,通过焦耳热法成功将镍铁合金纳米颗粒锚定在氮掺杂的、生长在碳布上的垂直石墨烯阵列(NiFe@NVG/CC)上。接着,在三电极系统中对NiFe@NVG/CC在碱性环境下的OER性能进行测试,并通过扫描电子显微镜和X射线衍射等分析催化剂在反应前后的形貌及物相变化。最后,通过密度泛函理论计算探讨NiFe@NVG的内在OER机理。
-
石墨烯取代沙子 制造更轻、更坚固的混凝土
节省沙子并不是唯一的好处。与使用普通骨料制成的混凝土相比,这种混凝土的重量减轻了 25%,韧性提高了 32%,峰值应变提高了 33%,抗压强度提高了 21%。但从另一方面看,其杨氏模量降低了 11%,而杨氏模量是衡量材料抗拉伸变形能力的指标。
-
重庆大学Guangqi Xiong等–功率超声辅助搅拌对水泥浆体中氧化石墨烯的影响:分散性、微观结构和力学性能
在这项研究中,开发了一种新型的功率超声(PUS)辅助搅拌技术,以优化氧化石墨烯在水泥浆中的分散。
-
【废锌碳电池回收】ACS SRM:废锌−碳电池制备的珊瑚状NiO@石墨烯复合材料:超级电容器的几何结构和电化学研究
将两个清洗过的碳电极连接到直流电源作为阴极和阳极。在电解液中,阴极和阳极之间的距离保持在大约2厘米。电化学剥离过程在5V下进行,时间为24小时。反应结束后,黑色溶液超声4h,过滤,乙醇洗涤,去离子水。最后,将黑色浆料在100℃下干燥6h,得到石墨烯纳米片(GNS)。
-
表面电荷密度决定了不对称氧化石墨烯通道中离子电流的整流方向
总体而言,低σ时,静电屏蔽主导离子输运,而高σ时强残留引力形成的离子团块阻碍通道。这些发现为新型纳米流体器件和整流方向可调离子二极管的设计提供了前景。
-
清华大学申请膨胀氧化石墨烯专利,能显著提高最大结合量
本发明提供的膨胀氧化石墨烯作为固相萃取中使用的吸附剂,或者液相色谱的固定相中使用的填料时,相比现有技术中使用的吸附剂或填料,具有显著更高的最大结合量,同时也具有良好的回收率。
-
Adv. Mater.:晶圆级单晶石墨烯在Cu(111)单晶衬底上的可控制备
本工作报道了单晶度约为95%的4英寸蓝宝石上Cu(111)晶圆的制造。在温度梯度退火下实现了具有多晶织构的铜的异常晶粒生长,消除了面内孪晶界并伴随面外晶界的迁移。单晶Cu(111)晶圆的出现使得石墨烯的生长能够提高结晶度(>97%)。生长的4英寸单晶石墨烯晶在约290 K下测量时表现出平均迁移率约7284 cm2 V-1 s-1以及偏差约5%的均匀薄层电阻,为高质量的受控合成铺平了道路。
-
日本产业技术综合研究所Nat. Commun.: 石墨烯中的碱金属双层插层
自1926年被首次报道以来,碱金属(AMs)在石墨中的插层已经被广泛研究了近一个世纪。AMs包括锂(Li)、钠(Na)、钾(K)、铷(Rb)和铯(Cs),由于其低电负性、高反应性、催化行为和在石墨中存储电荷的能力而引起了特别的兴趣。石墨烯层之间的AMs插层有望用于电子操纵和能量存储,虽然进行了广泛的研究,但其潜在机制仍然具有挑战性。
-
南华大学《AlP Advances》:柔韧、耐高温、高效的电加热石墨烯/聚酰亚胺薄膜
系统研究了石墨烯含量对电热膜形貌、微观结构、电热性能以及机械柔性的影响。结果表明,GE/PI 电热膜不仅保留了石墨烯的良好导电性,还具有聚酰亚胺的优异机械性能和高耐热性。添加了8wt. % GE的电热膜在24V电压下可迅速达到 390 ℃,且温度分布均匀,500 ℃时的质量损失仅为 0.98 wt. %。这种薄膜在柔性电热元件等领域有着广泛的应用。
-
Nano Res.[合成]│华南师范大学徐小志课题组:AB堆垛双层石墨烯单晶生长
华南师范大学徐小志课题组针对AB堆垛的双层石墨烯目前存在的随机成核问题,提出了一种在Cu/Ni(111)箔上制备AB堆垛双层石墨烯单晶薄膜的方法。采用一种耐热盒辅助策略有效消除了Cu/Ni(111)表面上的颗粒,大大减少了随机扭曲岛和无法控制的多层的发生。
-
艾伟教授、杜祝祝副教授Energy Storage Materials综述:石墨烯基主体材料用于锂金属负极
该文系统综述了石墨烯基主体材料在提高锂金属性能方面的研究进展。首先,对石墨烯基主体材料的锂化方法进行了详细分析;随后,系统阐述了石墨烯基主体材料的结构调控以及组分优化策略,包括石墨烯材料的纳米化、杂原子掺杂以及与其他物质复合等方面。最后,强调了石墨烯基主体材料在实用化锂金属电池中所面临的机遇和挑战。