科研进展
-
IF 17.1! 石墨烯和其他二维材料的环境和健康影响:石墨烯旗舰视角
由欧盟委员会资助的石墨烯旗舰项目(2013-2023)致力于识别石墨烯基材料以及新兴二维材料(包括过渡金属二硫化物、六方氮化硼等)可能存在的危害。此外,还探索了所谓的绿色化学方法,以实现安全、可持续生产和使用这一迷人纳米材料家族的目标。
-
伊斯兰堡国际伊斯兰大学–便携式能源:用于可穿戴超级电容器的V2O5-pBOA-石墨烯纳米复合材料
新兴的可穿戴电子设备领域推动了对先进储能方案的需求。其中,可穿戴超级电容器因其高稳定性、快速充放电能力和成本效益等固有优势而备受关注。本文揭示了柔性和可穿戴超级电容器的最新进展,重点介绍了新型V2O5-pBOA -石墨烯纳米复合材料的卓越性能。
-
阿米尔卡比尔技术大学–功能化氧化石墨烯纳米粒子在饱和不饱和多孔介质中的传输和保留流速离子强度和初始粒子浓度的影响
本研究旨在研究流速、离子强度 (IS) 和初始颗粒浓度三个参数对聚乙烯吡咯烷酮功能化氧化石墨烯 (GO-PVP) 传输行为和保留机制的影响。
-
巴斯克大学《Carbon》:石墨烯复合阴极和新型稀溶剂化电解质的组合,实现实用的锂硫电池
研究探索了优化的高硫含量石墨烯阴极与新型稀释电解质(SSE)的共生组合,SSE 由 1,3-二氧戊环(DOL)作为溶剂和 1H,1H,5H-八氟戊基-1,1,2,2-四氟乙基醚(OCTO)作为稀释剂组成,E/S 比为 7 μL mg-1。评估了阴极配方中加入石墨烯的影响以及阴极与电解液之间的物理化学兼容性,并与基准 DME/DOL 电解液进行了比较。
-
香港科技大学《Adv Sci》:导电激光诱导石墨烯在水悬浮液中的断层成像,用于水下机器人和自动渔业
研究提出利用化学耐久性和导电性激光诱导石墨烯(LIG)在水悬浮液中进行断层成像。这些石墨烯电极被设计成阻抗成像单元,用于四端电测量。利用实时便携式成像原型,可以通过等效阻抗建模看到清水和浑水中的导电和介电物体。这种低成本的石墨烯层析成像测量系统与传统的可视相机相比具有显著优势,因为在传统相机中,悬浮的浑水颗粒会阻碍成像分辨率。
-
超短石墨烯等离子体波包的电学产生、传播控制和检测 为实现太赫兹频率的超高速信号处理做出贡献
成功地以电子方式产生并控制了最短脉冲宽度为 1.2 皮秒的石墨烯等离子体1 波包2 的传播。这一结果表明,太赫兹信号的相位和振幅可以通过石墨烯等离子体进行电子控制。它使太赫兹信号处理方法有别于使用晶体管的传统电路技术,有望为今后实现超高速信号处理做出贡献。
-
浙理工《J ENERGY STORAGE》:苯胺和苯醌的非均相聚合物使石墨烯基超级电容器具有高能量密度
研究设计并合成了一种同时含有苯胺单元和苯醌单元的新型异质聚合物(polyAHQDME),并最终将其接枝到还原型氧化石墨烯(rGO)框架上。不出所料,具有氧化还原活性的 polyAHQDME 改性剂使 rGO 具有 685.4 F g-1 的超高比电容,是纯rGO 的五倍。当分别在准固态水溶液和有机电解质中组装成对称双电极器件时,其关键能量密度参数分别高达21.6和100.6Wh kg-1,优于最近报道的大多数改性碳电极材料。
-
西安交通大学:综述!水性混合超级电容器用柔性电极的最新进展与展望
回顾并总结了基于多孔金属载体、碳基板(包括碳纳米管网络)、石墨烯和可穿戴碳(碳纤维、碳布、碳纤维布等)的柔性电极材料以及高性能AHS的其他柔性材料的最新进展。这些柔性电极具有独特的构型和优化的界面结构,使AHS在各种恶劣条件下具有优异的电化学性能和优异的机械稳定性,具有巨大的实际应用潜力。此外,还概述和讨论了构建具有新颖构型和AHS的柔性电极的未来方向和前景
-
以色列特拉维夫大学Avinash Kothuru:激光打印技术突破:直接制造柔性“石墨烯硅”薄膜作为锂离子电池阳极
本研究通过激光打印技术成功制造了柔性“石墨烯硅”薄膜,作为高性能锂离子电池阳极,展示了其在能量存储应用中的潜力。这种创新方法不仅为先进的LIBs铺平了道路,还为将各种材料转化为高性能电极设立了先例,减少了电池生产的复杂性和成本。未来的研究将集中在优化和改进这一过程,以实现更复杂、可控的产品,进一步推动这一技术在能源存储和先进电子设备生产中的应用。
-
浙大高超团队:石墨烯纤维热管理领域成果集锦
浙江大学高超教授团队和合作者针对石墨烯和石墨烯纤维材料,以实际应用为导向,进行了长期积累研究,取得了丰富的系列研究成果。
-
陕西师范大学/犹他大学/中科院苏州纳米所Nat. Commun.: 氢键有机框架和石墨烯的大规模二维异质结
研究结果表明,通过自提升效应制备具有大规模均匀性和高度结晶性的二维有机-无机异质结是一种有前景的方法,该方法通常适用于大多数范德华材料。
-
科学家颠覆石墨烯不透性和化学惰性的传统认知,开发高精度气体跨膜输运探测技术,助力解决能源、化工等领域分离共性问题
他利用石墨烯密封石墨单晶微腔的全新器件结构,将气体跨膜传输的测量精度较此前领域内最高水平提高了 8 至 9 个数量级;并以该测量精度为基础,发现氢分子反常穿透石墨烯晶格(而比氢分子尺寸还要小的氦原子无法穿透)的现象。
-
揭示石墨烯的极限强度和韧性
材料科学家都知道,完美是很难实现的。与任何材料一样,石墨烯也可能存在缺陷。这些缺陷会降低断裂阶段的强度。强度的降低与最关键缺陷的大小成正比,而最关键缺陷的大小又与检测样品的大小成正比。因此,较小规模的材料往往强度较高,因为发现缺陷的可能性较低。另一方面,在较高的尺度上,即使是最坚固的材料也会显得更加脆弱,因为出现缺陷的概率会增加。
-
中北大学李宁胶体界面JCIS:双S-scheme MoS2/ZnIn2S4/石墨烯量子点三元异质结用于高效光催化制氢
该异质结利用了MoS2和GQDs的强可见光吸收能力和长的载流子寿命,通过与ZIS的结合,显著提高了光吸收能力,并在500-1500 nm范围内实现了有效的电荷分离和传输。研究团队发现,这种三元异质结由于其双S-scheme界面(MoS2-ZIS和ZIS-GQDs),形成了有向的内建电场,加速了光生电子从MoS2和GQDs的导带向ZIS的价带转移,促进了与空穴的快速复合,从而提高了光催化反应的效率。