科研进展
-
芝加哥大学《Small》:以木材为原料制备石墨和石墨烯导电油墨
这种生物石墨的质量指标等同或超过了球化天然石墨,拉曼 ID/IG 比值为 0.051,与石墨烯层(La)平行的晶粒尺寸为2.08微米。这种生物石墨可直接作为液相剥离石墨烯的原始输入材料,用于规模化生产导电油墨。
-
由人工智能驱动的系统能快速准确地检测有毒气体
这一创新系统依赖于嵌入石墨烯表面的金属催化剂纳米带。这种装置的功能就像人造鼻子,能与目标有毒气体分子发生反应。当二氧化氮分子与石墨烯结合时,传感器的电导率就会发生变化,从而使该系统能够极其灵敏地检测气体泄漏。
-
石墨烯-hBN多层膜增强和调制纳米颗粒间的近场辐射传热
在这项工作中,我们研究了放置在G-hBN多层膜两侧的两个GSCS纳米颗粒之间的NFRHT。通过弱耗散双曲模式,热纳米粒子的能量可以有效地传递给冷纳米粒子。
-
AI帮助搭建生物制造“超级工厂”,科学研究用上AI了
记者了解到,一些研究者还考虑在研究中应用AI技术,或在跨学科研究中融合AI、寻找智能的表现形式。“到目前为止我们接触AI很少,但最近也让学生尝试用AI来识别少层石墨烯的层厚和转角。” 清华大学教授周树云告诉第一财经记者。
-
中科院上海硅酸盐所:石墨烯气凝胶复合材料,用于高效电磁波吸收
通过冰模板辅助三维打印策略形成的宏微观协同石墨烯气凝胶被原位生长的碳化硅纳米线(SiCnws)切割,而氮化硼(BN)界面结构则被引入到石墨烯纳米板上。独特的复合结构迫使入射电磁波发生多重散射,确保了界面极化、传导网络和磁介质协同作用的综合效果。
-
【学术聚焦】2024年第47期:国家重点实验室刘可帅课题组在《Nano Energy》上发表重要研究成果
团队提出了一种湿适应氨纶/石墨烯/棉纤维/聚氨酯复合纱线(SGCPY)传感器。SGCPY传感器具有高的机械性能(约80%),超疏水性能(>130◦),即使在水中也具有良好的应变敏感性(1.82)和抗疲劳性(12,000次循环),同时SGCPY传感器还能稳定地监测人体运动和进行人机交互,这主要得益于材料优良的物理性能以及其独特的同轴结构。
-
东南大学倪振华/王俊嘉团队: 更高效率+更快速度的石墨烯-硅集成调制器
近日,东南大学倪振华、王俊嘉教授和中国电子科技集团第五十五研究所带领研究团队利用金辅助转移方法实现了基于热光学和电吸收效应的石墨烯-硅集成调制器。与其他石墨烯转移方法相比,金辅助方法采用金膜而不是 PMMA 作为支撑层,提供了简化的制造和低接触电阻,得益于此,由金辅助转移实现的石墨烯-硅集成平台支持高性能光调制,展示了更高的效率和更快的调制速度。
-
他,师从诺奖获得者/石墨烯之父!西湖大学独立PI,新发Nature子刊!
在此,研究人员证明了平行堆叠扭曲WSe2中的这种空间周期性铁电极化可以将其摩尔电势印在远处的双层石墨烯上。除了石墨烯中的电荷中性点之外,这种远程摩尔电势还会产生明显的电阻峰,这些电阻峰可以通过WSe2的扭转角进行调节。
-
IF 17.3!二维材料膜离子选择性和渗透性的增强
本综述聚焦于二维材料膜在离子选择性分离方面的最新进展,深入探讨了二维材料用于膜制造的基本特性、合成和制备方法、基于电学性质的分类,以及提高离子选择性和离子渗透性的策略。文章还探讨了在海水淡化、渗透能量转换和酸回收等前沿领域的应用。此外,本综述讨论了与垂直二维纳米通道、阴离子交换膜、大规模制备、结构稳定性、二维材料组装和质量传递机制相关的发展挑战和未来研究方向。
-
添加石墨烯突破了传统陶瓷工艺的界限
材料科学家达里娅-安德烈娃及其同事对这项技术进行了改良,利用超声波将 GO 更好地混合到高岭土泥浆中。他们调整了 GO 的浓度和超声波照射时间,找到了最能提高陶瓷强度和耐热性的条件。该团队还与驻校艺术家 Delia Prvački 合作,后者用这种新型陶瓷材料创作了作品,并在新加坡国立大学博物馆展出。
-
曼大李加深团队 CEJ:用于挥发性有机化合物检测的石墨烯/金属氧化物/细菌纤维素/聚乙二醇复合气凝胶
本工作利用溶剂交换和冷冻干燥技术制备了一种超轻三维细菌纤维素气凝胶,并用聚乙二醇与石墨烯和金属氧化物功能修饰,以检测可挥发有机化合物气体。该传感器三维结构具有高渗透性细菌纤维素复合材料,在更广泛情况下对丙酮、甲醛和乙醇提供了优越传感特性。便携式BC复合传感器对挥发性有机物检测具有显著灵敏度和选择性。
-
西北有色金属研究院Carbon:超高强度与塑性兼备的Ti-6Al-4V复合材料:石墨烯诱导原位形成TiC和相干纳米相
这项研究通过引入商业化的rGO纳米粉末,成功地制备了具有超高强度和优异塑性的Ti64基复合材料。研究人员揭示了TiC颗粒和α”纳米沉淀相与Ti64基体之间的相互作用,以及这些相互作用如何导致材料强度的显著提高。同时,他们也发现高密度的相干纳米级α”沉淀相及其孪晶行为是材料大塑性的原因。
-
用于芯片实验室应用的激光诱导石墨烯湿转移技术
本文提出了一种新的廉价转移方案,该方案利用热塑性基材在溶剂中的部分溶解性,使它们渗透到LIG中,将其从聚酰亚胺上剥离,并进行了优化,以最大限度地减少转移的LIG(t-LIG)薄层电阻。