科研进展
-
石溪大学Thomas K. Allison课题组–持续赝自旋极化石墨烯中光激发非热电子的动量空间观测
本研究观察到具有晶格赝自旋极化的初生光激发电子的显著非热分布,这与简单紧束缚理论的结果非常一致。通过改变激发通量,本研究改变了电子-电子与电子-声子散射在初始分布弛豫中的相对重要性。增加激发通量会导致非共线电子-电子散射增加和赝自旋极化降低,尽管上散射电子保持一定程度的极化。这些详细的石墨烯动量分辨电子动力学研究表明了高性能时间分辨动量显微术在研究二维材料方面的能力,并可为石墨烯器件的设计提供参考。
-
麻省理工Jeehwan Kim课题组–先进电子器件三维/二维异质结构的混合维集成
本研究全面回顾了3D-on-2D掺入策略的最新进展,包括直接生长到基于层转移的方法以及从非外延到外延的集成方法。技术进步和障碍进行了严格的讨论,以探索最佳的,但可行的,整合策略的三维对二维异质结构。最后,展望了混合维集成过程,确定了最新技术中的关键挑战,并提出了未来创新的潜在机遇。
-
西北工业大学付前刚/孙佳/张育育:碳壳热疏导显著提高ZrC-SiC/TaC涂层的烧蚀防护性能
采用聚合物转化陶瓷法制备含有石墨烯壳的SiC/TaC,并通过超音速大气等离子喷涂引入ZrC涂层中。涂层中石墨烯壳的导热网络有助于增加热疏导能力,使得烧蚀表面降温约200 °C,减少了低熔点相的挥发并延缓了生成ZrO2颗粒的烧结,从而延长了涂层的抗烧蚀寿命。
-
中国地质大学 张留洋、余家国 高性能钠离子电池中石墨烯孔穿孔与Co3Se4原位生长的耦合研究
得益于独特的结构所赋予的高导电性和快速离子传输,Co3Se4/多孔石墨烯在5.0 A g−1下具有519.5 mAh g−1的卓越倍率性能和良好的循环稳定性。研究结果表明,钠离子在石墨烯基复合材料内部的传输是提高性能的关键,该方法可以有效地修饰石墨烯基纳米材料作为潜在的阳极材料。
-
西安交通大学:易于组装柔韧、可拉伸和可连接的对称微型超级电容器,具有宽工作电压窗口和良好的耐用性
研究通过将激光直写石墨烯(LG)电极与磷酸-非离子表面活性剂液晶(PA-NI LC)凝胶电解质相结合,开发出了可在宽工作电压窗口工作的柔性对称微型超级电容器(MSC)。为了增加 MSC 器件的柔性并提高其与各向异性表面的保形能力,在聚酰亚胺(PI)薄膜表面形成相互咬合的石墨烯后,进一步将器件转移到柔性、可拉伸和透明的聚二甲基硅氧烷(PDMS)基底上;该基底在弯曲测试中显示出良好的柔性和机械特性。
-
北化工《ACS AMI》:新型的3D-G@rGO膜电极,用于高性能钾离子电池
研究采用自蔓延还原策略,为 PIB 制备了柔性自支撑三维多孔石墨@还原氧化石墨烯(3D-G@rGO)复合薄膜。三维多孔网络不仅能有效缓解石墨的体积膨胀,还能为钾储存提供大量活性位点,并允许电解质渗透和离子快速迁移。
-
长春工业大学《Langmuir》:基于石墨烯的和多功能集成的超疏水涂层,可扩大结构钢在建筑建材领域的应用价值
在先前工作的基础上,这项工作包括将石墨烯与硅树脂/环氧树脂(SR/EP、粘合剂)和生物基化合物/可膨胀石墨(MCDPM/EG、阻燃剂)一起进一步引入涂料中。设计涂料的目的集中在提高火灾隐患中的耐火效率,延长救援时间,丰富表面功能性。通过水接触角(WCA)测试验证了制备的涂层的表面润湿性。为了验证涂层可能存在超疏水性的原因,分别采用傅里叶变换红外光谱(FTIR)、能量色散X射线光谱(EDS)和扫描电子显微镜(SEM)研究了涂层的化学结构、表面元素含量和微小形貌。
-
香港城市大学马治强、邱美孌教授综述:基于激光诱导石墨烯的柔性皮肤电子设备在智能医疗中的最新进展
文章全面回顾了近期关于基于LIG的柔性皮肤电子设备(LIGS2E)在智能医疗应用中的研究。文章首先概述了激光诱导石墨烯(LIG)的制备方法、基本特性及其在柔性皮肤电子设备开发中采用的标准调控策略。接着介绍了多种LIGS2E的设计及其在智能医疗领域的广泛应用,包括生物物理和生物化学传感器、生物驱动器以及电源系统。文章的最后部分探讨了LIGS2E在医疗环境实际应用中可能面临的挑战,并提供了对未来研究和发展方向的见解。通过详细阐述LIGS2E的性能及局限性,本综述旨在促进智能医疗技术的发展。
-
我国科学家开发出面向新型芯片的绝缘材料
具体来看,团队首先以锗基石墨烯晶圆作为预沉积衬底生长单晶金属铝,利用石墨烯与单晶金属铝之间较弱的范德华作用力,实现4英寸单晶金属铝晶圆无损剥离,剥离后单晶金属铝表面呈现无缺陷的原子级平整。随后,在极低的氧气氛围下,氧原子逐层嵌入单晶金属铝表面的晶格中,最终得到稳定、化学计量比准确、原子级厚度均匀的氧化铝薄膜晶圆。
-
马里兰大学胡良兵团队Nano Res.:高温超快合成CoS@石墨烯核壳纳米颗粒促进高效水分解
研究团队报告了一种超快(约7毫秒)高温合成技术,用于制备过渡金属硫化物纳米颗粒。以钴硫化物(CoS)为例,本研究展示了一种新型的核壳结构电催化剂,即钴硫化物@少层石墨烯(CoS@few-layer graphene),其核壳结构中的CoS纳米颗粒直径约20纳米,石墨烯层厚度约2纳米,这些纳米颗粒嵌入在还原氧化石墨烯(RGO)纳米片中。
-
中国科大在人工笼目超晶格中实现色散选择型能带调控
研究团队精心设计了一种具有笼目晶格形式的人工电子超晶格,实现了石墨烯能带结构中不同色散类型分量的选择型调控。经实验及理论研究发现,在人工笼目势场作用下,石墨烯能带中出现了线性色散能带和无色散平带等不同类型的能带分量。
-
ACS Nano:基于ReS2/h-BN/石墨烯异质结的超高速多位存储器
该器件具有超快且多级非易失性存储特性,特别是具有113.36 V的超大存储窗口,107的擦除/编程电流比,30 ns的超快工作速度,超过1000个周期的出色耐久时间和超过1100 s的保留性能。此外,该器件表现出电和光可调谐的多级非易失性存储器行为。通过控制电压和光脉冲参数,器件实现了130电平(>7位)的电存储状态和45电平(>5位)的光存储状态。
-
德国卡尔斯鲁厄理工学院Jan G. Korvink 课题组–蜡烛碳烟纳米颗粒增强激光诱导石墨烯超级电容器性能
材料表征表明,退火工艺使纳米颗粒与LIG材料之间建立了牢固的连接,并增强了纳米颗粒的石墨化。制备的超级电容器在0.1 mA/cm2下的最大比电容为15.1 mF/cm2,最大能量密度为2.1 μWh/cm2,功率密度为50 μW/cm2。值得注意的是,蜡烛烟灰和LIG的协同活性超过了先前报道的基于LIG的超级电容器的性能。此外,该器件的循环稳定性表明,在10000次循环中,电容保持率为80%,库仑效率为100%。
-
浦项科技大学Byoungwoo Kang课题组–溶剂专用等离子体处理三维石墨烯泡沫的超快可逆超润湿性转换
由于3D GFs是由非极性丙酮蒸汽或极性水蒸汽制备的,短微波辐射(≤10 s)分别导致等离子体热点介导的甲基自由基和羟基自由基的产生。在自由基的直接化学吸附下,三维表面变成超疏水(水接触角= ~ 170°)或超亲水性(~ 0°),有趣的是,由于先前化学吸附的自由基和新引入的自由基之间通过形成甲醇样中间体进行容易的交换,润湿性转变可以重复多次。当将不同表面极性的三维石墨烯与非极性离子液体或极性水溶液电解质结合到电双层电容器中时,石墨烯表面与电解质的极性匹配比其在≥0.5 A g-1时的不匹配电容高≥548.0倍,证明了润湿性控制三维石墨烯的重要性。
-
大连理工大学《ACS ANM》:石墨烯/PVA复合气凝胶,用于海水淡化
实验和数值模拟结果表明,径向-GO/PVA 气凝胶具有横向径向支柱和纵向片状支柱,并带有横向平行韧带,因此在 ISVG 方面具有多功能特性,包括优异的光吸收性能、合理的水分调节性能、良好的热管理能力和高效的排盐性能。在标准太阳辐照(1 kW-m-2)条件下,水蒸发率可达 1.58 kg-m-2-h-1。更重要的是,径向-GO/PVA 气凝胶在浓度为 20 wt % 的 NaCl 溶液中连续蒸发水超过 8 小时,表现出长期稳定性,这表明通过 ISVG 路线对高浓度盐水进行脱盐和净化具有潜在的应用前景。