纳微快报
-
浙江大学高超等:面向极端热管理领域的具有无缝异质界面的结构稳定高导热石墨质膜
为探究石墨质膜(GF)在极端温变环境下结构与性能的稳定性,本研究引入了从液氮环境到大气环境的快速循环冲击试验(LNS试验)。通过对GF进行反复LNS试验以评估其作为热管理组件材料在极端使役条件下的可靠性。
-
山大韩琳&张宇等综述:柔性石墨烯场效应晶体管及其在柔性生物医学传感中的应用
文章介绍了FGFET的基本结构、工作原理以及评估参数,重点探讨了FGFET的材料选择和器件图案化技术,为构建高性能器件提供了指导策略。聚焦FGFET在可穿戴和植入式生物传感中的应用,重点分析了实现高性能柔性生物传感器的关键技术环节。文章最后展望了该领域未来的发展趋势。本文重点在该领域的关键技术、发展机遇、趋势及挑战进行分析讨论。希望这些讨论能为未来在高性能GFET及其柔性生物医学传感应用方面的研究提供有益的参考。
-
清华大学任天令/田禾等综述:基于二维材料的器件及芯片技术发展路线
首先详细介绍了材料合成技术和包括器件结构、介电和接触工程以及材料转移在内的晶体管制造工艺。然后讨论了典型芯片领域的二维晶体管应用现状,包括数字和模拟电路、异构集成芯片和传感电路。此外,还介绍了基于特定机制器件的几种有前景的新兴应用方向(人工智能芯片和量子芯片)。最后,分析了二维材料在实现电路级或系统级应用时遇到的挑战,并进一步推测和展望了潜在的发展路线。
-
韩国首尔国立大学Seung Hwan Ko教授等:可穿戴热管理应用的功能材料和创新策略
本文综述了近年来可穿戴热管理材料和创新策略的研究进展,并讨论了构成每种策略的每种材料/设备的优势和局限性,然后总结了热调节可穿戴技术的未来前景和挑战,以便为未来的热调节可穿戴行业的发展提供思路。
-
南京大学姚亚刚等:消除纳米片褶皱后的高导热/高强度石墨烯基复合膜,成功用于冷却柔性LED屏幕和智能手机
南京大学姚亚刚教授课题组通过对具有氢键和π-π相互作用的石墨烯纳米片/芳纶纳米纤维(GNS/ANF)复合水凝胶网络进行平面内拉伸,抑制了石墨烯纳米片在干燥过程中由于毛细作用力导致的向内收缩,消除了石墨烯纳米片的褶皱并使之在平面内高度取向排列,从而产生了快速的面内热传递通道。
-
垂直取向高分子导热复合材料的膨胀流辅助构筑方法
北京大学白树林教授课题组提出了在膨胀流辅助下构建各向异性填料在复合材料中的垂直取向结构(使用片状BN作为概念验证),该方法具有通用、可大规模生产的特点。BN在硅胶中的取向在厚度方向沿曲线分布,包括在中心区域的垂直取向和条带表面的水平取向。由于BN在条带中心区域的垂直取向,获得了高达5.65 W/(m·K)的面外热导率,通过添加沥青基碳纤维复合材料热导率可以进一步提高到6.54 W/(m·K)。
-
浙江大学秦发祥团队:调控MXene/Graphene基插层微球的异质界面工程,增强电磁波吸收性能
微球中丰富的2D/2D/0D/0D插层异质结提供了高密度的极化电荷,同时产生了丰富的极化位点。通过调整石墨烯和MXene在前驱体中的比例,结构单元中二维材料的插层周期可以被精确地设计,这可促进可调节的界面电荷积累行为和极化特性。并通过CST建立不同插层模型验证了插层调控对于界面极化损耗的增强。在5wt%的低填充物负载下,极化损耗率超过70%,最小反射损耗可以达到-67.4dB。
-
北理工曹茂盛等:氧化分子层沉积剪裁仿生态纳米结构,以操纵电磁衰减和自供电能量转换
利用oMLD技术对微结构进行可控地剪裁,可以灵活地调整其电磁特性,实现选频微波吸收,最佳反射损耗达到-58 dB。通过对仿生态纳米结构的深入洞察,直观地揭示了电磁响应的材料基础。
-
二维材料改进锌离子电池负极的原理、进展和挑战
自从几十年前石墨烯被发现以来,越来越多的二维材料由于其独特的化学、物理和机械性能,在能量存储方面获得了巨大的关注。二维材料作为一类超薄层状结构纳米材料,具有超高比表面积、大量暴露的活性位点、优异的机械强度,柔韧性以及导电性,已被广泛使用,通过多种策略实现锌离子电池先进负极的制备。
-
室温下可快速自愈合的高导热聚合物/石墨烯复合材料
天津大学封伟教授团队使用乙烯基封端的聚二甲基硅氧烷(PDMS)作为交联增强剂,聚2-[[(丁胺基)羰基]氧基]乙酯(PBA)作为软段,通过优化分子间的高密度氢键相互作用和分子间的强交联的比例,合成了一种具有高黏附力和快速完全自愈合的聚合物材料(PBA–PDMS)。然后,基于力-热耦合设计思想,以褶皱石墨烯(FGf)为导热填料,在真空条件下采用物理浸渍法得到了兼具高回弹、高导热、强界面黏附性、快速自愈合的导热复合材料(PBA–PDMS/FGf)。此外,PBA分子间氢键可在材料损伤处实现分子链段的重组,抑制和愈合材料的裂纹和分层,实现导热通道和碳骨架的重新构建。因此,室温下放置2 h,PBA–PDMS/FGf复合材料的导热性能和机械性能可恢复到初始状态。基于实验表征,诠释了复合材料结构损伤和导热性能损伤修复的机理,并在机械手传热验证了这一导热自愈合性能。
-
中科院宁波材料所林正得研究员等:液态金属表面修饰的石墨烯热界面材料拥有超低界面热阻
本文结合机械定向和表面改性策略,构建了一个三层结构的热界面材料(TIM),主要包括中间的垂直排列的石墨烯和上下表面的微米厚的液态金属作为帽层。基于中间层合理的石墨烯取向调节,所得到的基于石墨烯的TIM表现出176 W m⁻¹ K⁻¹的超高热导率。此外,我们利用液态金属帽层与芯片/散热器形成了一个“液-固”接触界面,大大增加了有效传热面积,并在封装条件下给出了4-6 K mm² W⁻¹的低接触热阻。
-
NML综述:柔性导热薄膜材料的机理、制备与应用
四川大学杨伟教授与青岛理工大学冯昌平副教授基于对前期研究成果总结,以及国内外该领域的重要研究进展,在论文中系统综述了具有超高面内导热系数的本征高分子膜材料和高分子基复合膜材料的最新研究进展,并对其传热机理、提高导热系数方法、降低界面热阻策略及其潜在应用进行了总结和深入的讨论。最后讨论了柔性导热薄膜材料未来发展面临的挑战和机遇。
-
上海大学丁鹏研究员:三维互穿结构MXene/石墨烯基聚合物复合材料的软模板制备及多功能化
电子器件小型化、集成化发展影响着高分子复合材料转向多功能化研究。在聚合物中构建连续的三维功能网络,已被证明是能够实现复合材料多功能提升的有效策略。上海大学丁鹏研究员课题组通过简便的软模板-分散浸涂法,构建出连续的MXene/石墨烯功能网络,获得的复合材料同时具有出色的电磁干扰屏蔽(EMI SE为43.3 dB)和热管理性能(导热增强率为1118%),并且表现出优化的相变(相对焓效率多次循环后保持在83%)、动态热响应行为(储能模量约为6240 MPa)和机械性能(杨氏模量提升4倍)。这种制备方法在实现材料多功能化的同时,也具有能够实现大尺度设计、样品定制、易于规模化的独特优势。
-
综述:激光诱导石墨烯在智能传感方向的应用
文章首先简要介绍了LIG和LIG复合物的制备原理,包括形貌和组分的调控,物理和化学特性的控制等。接着基于设计原理和工作机制(特异结合型和非特异结合型的化学传感器,基于压阻效应的机械传感器等),对LIG传感器进行总结。最后,作者讨论了LIG的影响及其未来发展。