吉仓纳米
-
韩国科学技术院和北京理工大学Shoujun Zheng等–具有磁化石墨烯的自旋选择性薄膜晶体管
我们报告了一种在反应性反铁磁材料 CrI 3上具有磁化单层石墨烯的自旋选择性薄膜晶体管。石墨烯和CrI 3原子层之间的自旋相关杂化使得单层石墨烯中的自旋选择性带隙打开以及特定CrI 3层中磁化的电场控制成为可能。我们的第一性原理计算和运输数据的理论分析阐明了微观工作原理。我们通过电气手段对磁邻近效应进行微妙的操纵,实现了可靠的记忆晶体管操作(即存储器和逻辑器件组合操作)以及磁化石墨烯中朗道能级的自旋选择性探针。
-
安徽大学Yupeng Yuan等–高稳定Cu/W18O49@Graphene材料同步高效净化太阳能水蒸发过程中挥发性有机化合物
我们开发了一种Cu/W18O49@Graphene解决挥发性有机物污染的光热光催化材料。Cu和W18O49之间的等离子体耦合增强了光吸收,1–2层石墨烯封装保护W18O49内的氧空位,同时促进热电子提取,有效缓解其超快弛豫。
-
中国计量学院材料与化学学院Jingwen Ma等–石墨烯负载的BiFeO3复合材料显著增强过一硫酸盐的活性用于高效降解
得益于石墨烯的负载,含2%石墨烯的复合材料的比表面积约为纯BiFeO3的两倍,从而获得了较高的Fe2+水平。高Fe2+水平促进超声辅助活化过氧单硫酸盐有效降解盐酸四环素。特别是在50 W超声辐射下反应6 min,去除率可达~100%。该复合催化剂性能稳定,可循环利用,可应用于实际废水处理。
-
圣马丁国立将军大学和柏林洪堡大学–石墨烯阻抗生物传感器实时监测细胞在软基质上的粘附
在这里,克服了石墨烯电池传感器在典型软衬底(即聚(二甲基硅氧烷)(PDMS))上常规实现所面临的几个挑战。系统地研究了石墨烯转移前后表面能的影响。因此,本研究已经确定了合适的载体聚合物、最佳的基质(预)处理和用于去除载体的合适溶剂。
-
罗马第一大学Alberto Guandalini等–独立石墨烯能量损失谱中的激子效应
本研究展示了有限传递动量下多体效应对电子激发的重要性。在GW近似和Bethe–Salpeter方程中分别讨论了准粒子校正和激子效应。这两种效应在EEL光谱的描述中都是至关重要的,以获得与实验的定量一致性,激发间隙和π等离子体激元的位置、色散和形状都受到激子效应的显著影响。
-
首尔国立大学Gyu-Chul Yi等–GaN在石墨烯-蓝宝石上的脉冲模式金属有机气相外延生长
在石墨烯涂层蓝宝石衬底上生长的高质量GaN膜可以通过使用热释放带轻易地剥离并转移到外来衬底上。此外,揭示了在GaN生长过程中氨流的脉冲操作是制备高质量独立GaN膜的关键因素。
-
北京理工大学Xuge Fan、洛桑联邦理工学院和英国皇家理工学院–用于NEMS传感器的由石墨烯带和附加验证质量组成的谐振换能器
我们展示了由双层石墨烯制成的带弹簧和由硅制成的验证质量的谐振换能器,并通过激光多普勒振动测量法研究了它们在空气和真空中谐振时的非线性力学。
-
群马大学Jun-ichi Ozaki等–富勒烯烟灰翘曲石墨层的构建及其催化氧还原活性的研究
WGL HTs的ORR活性由WGL的曲率半径及其连续性决定。曲率半径影响氧气的吸附状态,如从氧气吸附测量中获得的平衡常数所示。通过功函数测量确定,石墨层的连续性也促进了电子向吸附氧的传输。WGL HTs的ORR活性位点充当氧吸附位点,π-电子系统将电子转移到吸附的氧上。
-
哥本哈根大学Gemma C. Solomon等–石墨烯纳米带上原子的电迁移力:吸附-表面键合的作用
这项研究表明,电场中二维表面上的原子迁移是由一幅不同于电场中带电粒子常用静电描述的图片决定的,因为潜在的键合和分子轨道结构与电迁移力的定义相关。因此,包括原子配体场的扩展模型可以更好地理解非平衡条件下吸附质在表面上的扩散。
-
橡树岭国家实验室Gyula Eres等–曲率在稳定掺硼纳米波纹石墨烯中的作用
我们使用像差校正的扫描透射电子显微镜、纳米束电子衍射和电子能量损失谱(EELS)来表征燃料电池运行前后掺B FLG的原子和电子结构。这些数据表明,掺杂B的FLG的纳米级波纹是提高稳定性和高耐腐蚀性的关键因素。
-
吉林化工学院Fan-Long Jin和英荷大学Soo-Jin Park等–硅烷化石墨烯和离子液体增强酚醛树脂的电性能和冲击强度
研究发现,随着石墨烯含量从0增加到15 wt%,复合材料的电导率从2.3×10-10显著增加到4.14×10-3 S/m,随着添加5 wt%的C10[VImBr]2,电导率进一步增加到0.145 S/m。当石墨烯含量从0增加到15时,复合材料的电磁屏蔽效率从4.70提高到28.64dB,而当石墨烯的含量从0提高到15时复合材料的冲击强度从0.59显著提高到1.13kJ/m2,当C10[VImBr]2的含量为5时,复合材料的冲击强度达到1.53kJ/m2。
-
谢菲尔德大学Natalia Martsinovich–基于石墨烯的磷酸盐传感工程石墨烯与磷酸盐离子分子相互作用的理论和实验研究
在这项工作中,使用密度泛函理论(DFT)计算,研究了原始石墨烯和几种改性石墨烯材料(氧化石墨烯、带空位石墨烯和弯曲石墨烯)作为磷酸盐传感器材料的候选者。研究的计算表明,原始石墨烯和功能化石墨烯都能强烈吸附磷酸盐。此外,相对于硝酸盐,这些石墨烯纳米材料表现出对磷酸盐的吸附选择性,对磷酸盐具有更强的吸附能。
-
磁性氧化石墨烯-聚多巴胺纳米杂化改性沸石-咪唑盐骨架-67对3,4-亚甲二氧基甲基苯丙胺的增强吸附及其微观机理的实验与计算
本研究采用磁性氧化石墨烯-聚多巴胺纳米杂化物(mGOP)对新型多孔材料沸石-咪唑盐骨架-67(ZIF-67)进行原位生长修饰,得到三维ZIF-67/mGOP,并将其用于吸附废水中的3,4-亚甲基二氧甲基苯丙胺(MDMA)。
-
墨西哥普埃布拉自治大学Ciencias研究所–氧化石墨烯量子点作为可饱和吸收剂的短脉冲调Q光纤激光器
结果表明,该材料具有饱和吸收特性,β = -1.178 x10-6 (m/W),非线性磁化率为Im(χ(3)) ≈ -1.573×10-7 (esu)。基于GOQDs作为光纤激光器开关器件的SA实验结果显示,该激光器产生的脉冲发射波长为1599 nm,频率为2 ~ 16 kHz,最大平均输出功率为1.3 mW,具有典型的调q激光器特性。
-
加拿大国家科学研究所–Nb2C–X(X=S,Cl,F)/石墨烯异质结构的第一性原理研究:评估水稳定性及其对电催化的意义
这项工作介绍了石墨烯在提高MXenes的抗氧化性和在水介质中的稳定性方面的关键作用,这对合成稳定的MXenes基(电)催化剂是一个有价值的见解。