郑州大学《Adv Sci》:3D打印亲钠Co3O4@C/rGO纳米片,用于超长周期金属钠电池

研究通过三维打印(3D)方法展示了沉积在还原氧化石墨烯(Co3O4@C/rGO)上的 Co3O4 和碳复合材料的分层结构微网格框架,该框架的多孔结构可控,高度和宽度可调,可用于无树枝状的 Na 金属沉积。结合光谱和计算分析,证实了立方 Co3O4 相的亲钠性、便捷的 Na 金属沉积动力学和富含 NaF 的固体电解质相(SEI)的形成。

成果简介

本文,郑州大学Hui Wang/王烨 教授团队/韩国成均馆大学 Ho Seok Park等研究人员在《ADVANCED SCIENCE》期刊发表名为”3D-Printed Hierarchically Microgrid Frameworks of Sodiophilic Co3O4@C/rGO Nanosheets for Ultralong Cyclic Sodium Metal Batteries“的论文,研究通过三维打印(3D)方法展示了沉积在还原氧化石墨烯(Co3O4@C/rGO)上的 Co3O4 和碳复合材料的分层结构微网格框架,该框架的多孔结构可控,高度和宽度可调,可用于无树枝状的 Na 金属沉积。结合光谱和计算分析,证实了立方 Co3O4 相的亲钠性、便捷的 Na 金属沉积动力学和富含 NaF 的固体电解质相(SEI)的形成。

此外,还利用原位透射电子显微镜和光学显微镜实时监测了三维打印 Co3O4@C/rGO 主控体上均匀、可逆的 Na 镀层/剥离过程。在对称电池中,3D打印的Co3O4@C/rGO电极在1 mA cm-2和1 mAh cm-2条件下的长期稳定性超过3950小时,库仑效率(CE)达到99.87%,即使在20mA cm-2和20 mAh cm-2条件下也能保持120小时,远远超过之前报道的用于Na金属阳极的碳基宿主。因此,三维打印 Na@Co3O4@C/rGO阳极与三维打印 Na3V2(PO4)3@C-rGO 阴极(约15.7 mg cm-2)的完整电池在 0.5C条件下循环500次后,比容量高达 97.97 mAh g-1,CE高达99.89%,证明了柔性 Na金属电池的实际运行情况。

图文导读

郑州大学《Adv Sci》:3D打印亲钠Co3O4@C/rGO纳米片,用于超长周期金属钠电池

图1. a) Schematic image of the fabrication process of the 3D-printed Co3O4/rGO microgrid host. b,c) TEM images of the ZIF-67 derived nanosheets. d) Size-view and e) Top view of the 3D-printed 50% Co3O4/rGO composite host with 16 layers. f–i) SEM and TEM images of the 3D-printed 50 wt.% Co3O4@C/rGO composite host. j) Elemental mapping images of the 3D printed 50% Co3O4@C/rGO composite hosts.

郑州大学《Adv Sci》:3D打印亲钠Co3O4@C/rGO纳米片,用于超长周期金属钠电池

图2. a) XRD patterns of the synthesized rGO and Co3O4@C/rGO. b) BET curves of the synthesized rGO and 50 wt.% Co3O4@C/rGO. High-resolution XPS profiles of Co3O4@C/rGO: c) C 1s; d) N 1s; e) O 1s and f) Co 2p. g) Co K-edge XANES and h,i) wavelet transform of the k2-weighted EXAFS data of the Co foil and Co3O4@C/rGO.

郑州大学《Adv Sci》:3D打印亲钠Co3O4@C/rGO纳米片,用于超长周期金属钠电池

图3. a) Na metal nucleation overpotentials of the 3D-printed 50 wt.% Co3O4@C/rGO electrode. b) Long-term cycling performances and c) CE of the 3D-printed rGO, 20 wt.% Co3O4@C/rGO, 50 wt.% Co3O4@C/rGO and 70 wt.% Co3O4@C/rGO at 1 mA cm−2/1 mAh cm−2 respectively. d) Long-term cycling performances of the 3D-printed 50 wt.% Co3O4@C/rGO at 10 mA cm−2/10 mAh cm−2. e) Rate performance of the 3D-printed 50 wt.% Co3O4@C/rGO with a capacity of 1 mAh cm−2. f,g) EIS curves of the rGO and 50 wt.% Co3O4@C/rGO after 10, 50100, and 200 cycles; h) Tafel profiles of the rGO and 3D-printed 50 wt.% Co3O4@C/rGO.

郑州大学《Adv Sci》:3D打印亲钠Co3O4@C/rGO纳米片,用于超长周期金属钠电池

图4. a) The voltage profile in the Na plating/stripping process on 3D-printed 50 wt.% Co3O4@C/rGO at 2 mA cm−2 with a capacity of 8 mAh cm−2. The morphology evolution of 3D-printed 50 wt.% Co3O4@C/rGO and the corresponding SEM images are shown in (b–e). f) C 1s, g) O 1s, h) Na 1s, and i) F 1s XPS spectra of the 3D-printed 50 wt.% Co3O4@C/rGO electrode after 20 cycles.

郑州大学《Adv Sci》:3D打印亲钠Co3O4@C/rGO纳米片,用于超长周期金属钠电池

图5. In-depth F 1s XPS profiles on the surface of a) 50 wt.% Co3O4@C/rGO and b) rGO host. In-depth C 1s XPS profiles on the surface of c) 50 wt.% Co3O4@C/rGO and d) rGO host. In situ optical microscopy images of Na deposited on e) 3D-printed 50 wt.% Co3O4@C/rGO and f) rGO electrodes at 1 mA cm−2 for 1 h. g,h) in situ TEM observations of Na metal plating and stripping upon 50 wt.% Co3O4@C/rGO sheets surface at different times. i) SAED image of Na metal deposited 3D-printed 50 wt.% Co3O4@C/rGO.

郑州大学《Adv Sci》:3D打印亲钠Co3O4@C/rGO纳米片,用于超长周期金属钠电池

图6. a) Galvanostatic discharge/charge voltage profiles in symmetric cells (Na@rGO||Na@rGO and Na@Co3O4@C/rGO||Na@Co3O4@C/rGO electrodes). b) Galvanostatic discharge/charge voltage profiles of Na@Co3O4@C/rGO||Na@Co3O4@C/rGO cell at 10 mA cm−2, 10 mAh cm−2. c) Schematic image of the full cell with 3D-printed Na@Co3O4@C/rGO anode and Na3V2(PO4)3@C-rGO (NVP@C-rGO) cathode. d,e) Galvanostatic discharge/charge voltage profiles and rate performance of the Na@Co3O4@C/rGO||NVP@C-rGO cell operated at the current densities range of 0.5–5 C. f) Long-term cycling performance of Na@Co3O4@C/rGO||NVP@C-rGO cell at 0.5 C. g,h) Long-term cycling and illuminating test of 3D-printed Na@Co3O4@C/rGO||NVP@C-rGO flexible pouch cell under various folded states. i,j) Galvanostatic discharge/charge voltage profiles and of long-term cycling performance of Na@Co3O4@C/rGO||S/PAN cell at 0.1 C.

小结

总之,通过三维打印技术成功制造出了具有 ZIF 衍生亲水片的分层微网格框架,可用于金属钠阳极。在半电池中循环时,3D打印的 Co3O4@C/rGO电极能够在 1mA cm-2和1mAh cm-2条件下循环超过 3950 次,CE 高达99.87%(在 10 mA cm-2/10 mAh cm-2 条件下循环 1000 小时,CE 高达99.85%)。原位 TEM 和原位光学显微镜观察清楚地证明了 50 wt.% Co3O4@C/rGO主体内无树枝状 Na 金属的电沉积,SEM、XPS、DFT 和AIMD模拟也进一步说明了这一点。对称 Na@Co3O4@C/rGO||Na@Co3O4@C/rGO 电池进一步验证了50wt.% Co3O4@C/rGO 宿主的适用性,该电池在10mA cm-2/10 mAh cm-2 的条件下可达到1000小时的超长循环寿命。此外,与 3D 打印的 NVP@C-rGO 阴极和 Na@Co3O4@C 阳极配对的全电池可在 0.5 C 温度下稳定运行超过 500 个循环,可逆容量高达 97.97 mAh g-1。这项工作为制造低成本、大规模、高性能的 3D 打印分层框架与亲钠氧化物以实现可行的 SMA 提供了新的启发。

文献:https://doi.org/10.1002/advs.202404419

本文来自材料分析与应用,本文观点不代表石墨烯网立场,转载请联系原作者。

(0)
材料分析与应用材料分析与应用
上一篇 2024年7月24日
下一篇 2024年7月24日

相关推荐

发表回复

登录后才能评论
客服

电话:134 0537 7819
邮箱:87760537@qq.com

返回顶部