成果简介
高性能柔性应变传感器在可穿戴设备和健康监测领域有着巨大的应用潜力。然而,开发在宽应变范围内具有高灵敏度的柔性应变传感器仍是一项重大挑战。本文, 郑州大学马竞、Mingfu Zhu等研究人员在《 ACS Appl. Mater. Interfaces》期刊发表名为“Highly Sensitive and Wide Detection Range Thermoplastic Polyurethane/Graphene Nanoplatelets Multifunctional Strain Sensor with a Porous and Crimped Network Structure”的论文,研究设计了一种具有多孔卷曲结构的纤维膜,作为 TPU/GNPs 柔性应变传感器的基底材料。这种结构设计有效地平衡了灵敏度和应变范围。
利用水洗电纺丝法制备的 TPU-PEO 纤维膜具有多孔的 TPU 框架。随后,对纤维膜进行无水乙醇刺激,以获得多孔卷曲的网络结构。通过超声波处理,GNPs 被修饰在热塑性聚氨酯纤维膜上。所制得的柔性应变传感器在较大的应变范围(350%)内具有较高的灵敏度(GF = 4047.5),并表现出优异的传感性能、稳定性和耐用性(大于 10,000 次循环)。它不仅能捕捉基本动作,还能有效识别和测量弯曲角度,从而实现更复杂的人机交互体验。这一进步为未来智能可穿戴技术和人机交互提供了可能性,推动了这些领域的发展。
图文导读
图1. (a)TPU/GNPs应变传感器的制造流程,(b) T/P纤维膜。(c) T/P-C纤维膜。(d) T/P-GNPs纤维膜。(e-f)T/P-GNP复合材料优异的柔韧性
图2.(a) T/P纤维膜。(b,c)T/P-W纤维膜在不同位置上不同多重度的形貌。(d,e)T/P-C纤维膜在不同位置上不同多重性的形貌。(f) T/P-GNPs纤维膜的表面形貌。
图3.(a) T/P纤维膜和T/P-W纤维膜的红外光谱。(b) T/P-GNPs复合纤维膜、TPU纤维膜和GNPs的XPS。(c) T/P-GNPs复合纤维膜、TPU纤维膜和GNPs的XRD。
图4:(a) TPU/GNPs 应变传感器最初五个拉伸-释放循环的应力-应变曲线,应变分别为 50%、100%、200%、400% 和 600%。(b) TPU/GNPs 应变传感器在 50-600%不同应变下五个周期的机械滞后。
图5、TPU/GNPs传感器在高灵敏度和宽检测范围图示
图6.TPU/GNPs应变传感器在人体运动检测中的应用
小结
综上所述,本文报道了一种具有多孔卷曲网络结构的TPU/GNPs纤维膜,该膜利用其优异的孔隙率和机械强度来平衡柔性应变传感器的灵敏度和工作应变范围。采用静电纺丝法制备TPU-PEO纤维膜,形成具有多孔结构的TPU网络结构,并通过水洗和无水乙醇刺激压接。随后,在超声波的协助下,GNP有效地附着在孔隙和纤维上。多孔结构有利于GNPs导电颗粒的粘附,有效增强了传感器的电气和传感性能。
同时,压接结构大大扩展了传感器的工作应变范围。TPU/GNPs应变传感器采用多孔和卷曲结构,在350%的工作范围内表现出高达4047.5的出色灵敏度。该传感器不仅可以区分不同的速率和应变,而且在长期运行(10,000 次循环)后仍能保持出色的稳定性和耐用性。除了出色的性能外,该传感器还能够准确监测人体运动和生命体征,甚至可以识别不同的弯曲角度。此外,它还可以应用于元宇宙进行实时人机交互,在该领域展现出广阔的前景。这进一步验证了将多孔和卷曲网络结构应用于柔性应变传感器的可行性,为平衡灵敏度和工作应变范围的挑战提供了新的解决方案。
文献:https://doi.org/10.1021/acsami.3c18397
本文来自材料分析与应用,本文观点不代表石墨烯网立场,转载请联系原作者。