基于方解石-石墨烯/锑化铟异质结构的高性能近场热光伏

该工作在方解石作为热发射器以及锑化铟半导体作为光伏电池的近场热光伏系统中引入了石墨烯。通过双曲声子激元与表面等离激元之间相互耦合的色散关系对具有大功率高效率的近场热光伏的机制进行了深入分析,有望为高性能的近场热光伏系统等新型能源转换装置提供理论支撑。

导读

近日,山东高等技术研究院吴小虎教授课题组与河南师范大学物理学院于坤教授课题组合作,以近场热光伏系统为平台,揭示了光轴扭转、激元耦合导致的光谱转变,并讨论了该光谱变化对近场热-电转换性能的影响。该工作在方解石作为热发射器以及锑化铟半导体作为光伏电池的近场热光伏系统中引入了石墨烯。通过双曲声子激元与表面等离激元之间相互耦合的色散关系对具有大功率高效率的近场热光伏的机制进行了深入分析,有望为高性能的近场热光伏系统等新型能源转换装置提供理论支撑。研究成果以“High-performance near-field thermophotovoltaics based on CaCO3-Graphene/InSb heterostructure”为题发表在Physical Review Applied上。

基于方解石-石墨烯/锑化铟异质结构的高性能近场热光伏

研究背景

由于光子隧穿的贡献,近场热光伏器件的输出功率可以超过远场热光伏器件几个数量级,近年来引起了广泛关注。以往的研究探讨了双曲材料带来的增强效应,但对双曲波段的频移研究甚少。此外,双曲超材料是通过复杂的纳米加工工艺以获得双曲特性。然而,方解石作为一种天然的双曲材料,无需昂贵的加工就具有双曲特性。尽管如此,方解石很少被选择作为近场热光伏器件中的热发射器。

研究亮点

针对以上问题,该工作提出将光轴扭转后的方解石和石墨烯引入近场热光伏系统中,考虑以其作为近场热源,锑化铟半导体作为电池的近场热光伏系统(图1)。方解石的光轴朝向包含面外(沿z轴方向)、面内两方面(沿x轴方向)。为了分析石墨烯对近场热光伏器件的影响,一共设置了四种不同的结构器件(CaCO3-lnSb、CaCO3-G/lnSb、CaCO3/G-lnSb、CaCO3/G-G/lnSb)。接下来,讨论了方解石的光轴扭转(图2)以及石墨烯的加入对近场热光伏系统性能的影响(图3)。数值计算结果表明,在只考虑辐射复合的假设下,CaCO3-G/lnSb结构表现出最好的性能。当热发射体温度为900 K时,CaCO3-G/lnSb结构的效率为41 %,输出功率密度为94 W/cm2。该器件性能显著提高的物理机制源于双曲声子激元与锑化铟带间跃迁之间的频率耦合,其中石墨烯中激发的表面等离激元起促进作用(图4)。

基于方解石-石墨烯/锑化铟异质结构的高性能近场热光伏

图1. 近场热光伏器件示意图。发射器和吸收体之间的近场辐射热传递沿z轴方向。

基于方解石-石墨烯/锑化铟异质结构的高性能近场热光伏

图2. (a)不同光轴朝向时CaCO3-lnSb结构的光谱热流。(b)不同光轴朝向时CaCO3-lnSb结构的输出功率。(c)不同光轴朝向时CaCO3-lnSb结构的效率。热发射体为体材料,间隙距离为20纳米,热发射器温度为900 K,电池温度为300 K。

基于方解石-石墨烯/锑化铟异质结构的高性能近场热光伏

图3. 四种结构的输出功率和效率随间隙距离的变化而变化。(a)输出功率。(b)效率。这里,热发射器为体材料。

基于方解石-石墨烯/锑化铟异质结构的高性能近场热光伏

图4. 不同结构的热发射器和光伏电池之间的能量透射系数随角频率和无量纲波数而变化。(a)CaCO3-lnSb;(b) CaCO3-G/lnSb;(c) CaCO3/G-lnSb;(d) CaCO3/G-G/lnSb。间隙距离为20纳米,热发射器为体材料。

总结与展望

双曲材料因其能在宽频率范围内激发双曲声子激元,产生显著增强的辐射热流,极大地促进了近场辐射换热及其相关领域的理论和技术发展。基于方解石-石墨烯/锑化铟异质结构的近场热光伏,有助于理解表面等离激元和双曲声子激元的耦合,以及高性能热光伏器件的设计。对近场系统进行研究将为增强光-物质相互作用提供新的解决方案,丰富纳米热光子学的研究内容。这将为基于近场辐射换热的高效能量转换设备、微纳尺度热能管理以及其他微纳米前沿技术的关键共性科学问题提供理论依据和分析手段。此外,这项研究有助于深入理解热辐射的机理,拓宽热辐射的应用领域,并进一步发挥热辐射在能源经济中的潜力。因此,这项研究具有重要的科学意义和广泛的应用前景。

作者简介

基于方解石-石墨烯/锑化铟异质结构的高性能近场热光伏

吴小虎,山东高等技术研究院研究员,山东省优青,山东省泰山学者青年专家,济南市科协科技创新智库专家服务团成员, 上海市热物性大数据服务中心青年委员会委员。2019年博士毕业于北京大学(佐治亚理工学院联合培养),荣获北京市优秀毕业生、北京大学优秀毕业生。主要从事辐射换热、太阳能光热利用、微纳光子学等领域的研究,以第一或通讯作者在Optica,Renewable Energy、ACS Photonics、Nanophotonics、Nanoscale、Materials Today Physics、ACS Applied Materials & Interfaces等SCI期刊发表论文100余篇,入选美国斯坦福大学发布的“全球前2%顶尖科学家(2023)”榜单。其博士论文被评为北京大学优秀博士论文,并被Springer出版社全英文出版。其双曲材料的工作入选美国光学学会2020年度全球30项光学进展“Optics in 2020”。同时获得多项荣誉,包括国际传热传质中心Hartnett-Irvine Award(2019)、中国新锐科技人物突出成就奖(2020)、福布斯中国30 位30岁以下科技精英(2021)、中国新锐科技人物创新贡献奖(2022)、济南市历城区十大杰出青年(2022)、济南市青年创新先锋(2022)、济南榜样(2022)、山东省省直机关优秀共产党员(2023)、影响济南科技人物(2023)、济南市优秀自然科学学术成果一等奖(2023)。主持国家和山东省科研项目4项。授权发明专利1项,软件著作权5项。担任《Clean Energy Science and Technology》编委,《Energy Storage and Saving》,《SmartMat》,《应用光学》,《东北电力大学学报》等期刊的青年编委。创办“热辐射与微纳光子学”微信公众号,并举办“热辐射研究生研讨会”,致力于学术分享与传播。

基于方解石-石墨烯/锑化铟异质结构的高性能近场热光伏

于坤,河南师范大学物理学院教授,博士生导师,河南省杰出青年基金获得者,河南省高校科技创新团队负责人,河南省教育厅学术技术带头人,博士毕业于北京理工大学仪器科学与技术专业。主要从事光谱发射率测量与调控、辐射测温技术方面的研究,研究领域涉及光谱发射率测量技术及仪器的研制、辐射测温方法及辐射测温仪器的研制、材料光谱发射率变化规律,多波长辐射测温算法等。主持国家自然科学基金3项,相关研究成果已经发表在Photonics Research、International Journal of Heat and Mass Transfer、Infrared Physics and Technology等SCI期刊发表,作为第一发明人授权专利7项,其中转让1项。

本文来自两江科技评论,本文观点不代表石墨烯网立场,转载请联系原作者。

(0)
石墨烯网石墨烯网
上一篇 2023年11月18日 16:47
下一篇 2023年11月18日 21:45

相关推荐

发表回复

登录后才能评论
客服

电话:134 0537 7819
邮箱:87760537@qq.com

返回顶部